This package always chooses the Koszul complex on a generating set for the maximal ideal as a starting point, and then computes from there, using the function acyclicClosure(DGAlgebra).
i1 : R = ZZ/101[a,b,c,d]/ideal{a^3,b^3,c^4-d^3} o1 = R o1 : QuotientRing |
i2 : A = acyclicClosure(R,EndDegree=>3) o2 = {Ring => R } Underlying algebra => R[T ..T ] 1 7 2 2 3 2 Differential => {a, b, c, d, a T , b T , c T - d T } 1 2 3 4 o2 : DGAlgebra |
i3 : A.diff 2 2 3 2 o3 = map(R[T ..T ],R[T ..T ],{a, b, c, d, a T , b T , c T - d T , a, b, c, d}) 1 7 1 7 1 2 3 4 o3 : RingMap R[T ..T ] <--- R[T ..T ] 1 7 1 7 |