Given an ideal $I$ and an integer $n$, returns the larger of the two numbers $\frac{\alpha(I)}{waldschmidt(I)}$ and the maximum of the quotients $m/k$ that fail $I^{(m)} \subseteq I^k$ with $k \leq$ SampleSize.
i1 : R = QQ[x,y,z]; |
i2 : J = ideal (x*(y^3-z^3),y*(z^3-x^3),z*(x^3-y^3)); o2 : Ideal of R |
i3 : lowerBoundResurgence(J, SampleSize=>5) 3 o3 = - 2 o3 : QQ |