Compute a set of Noetherian operators for $P$-primary component of $I$.
i1 : R = QQ[x,y,t]; |
i2 : I1 = ideal(x^2, y^2-x*t); o2 : Ideal of R |
i3 : I2 = ideal((x-t)^2); o3 : Ideal of R |
i4 : I = intersect(I1, I2); o4 : Ideal of R |
i5 : noetherianOperators(I, radical I1) 2 3 o5 = {1, dy, t*dy + 2*dx, t*dy + 6*dx*dy} o5 : List |
i6 : noetherianOperators(I, radical I2) == noetherianOperators(I2) o6 = true |
The optional argument Strategy can be used to choose different algorithms. Each strategy may accept additional optional arguments, see the documentation page for each strategy for details.
If the prime $P$ is known to be a ration point, the optional argument Rational can be set to true. This may offer a speed up in the computation.