i1 : R = QQ[x,y,z] o1 = R o1 : PolynomialRing |
i2 : P = matrix{{x^2*y+1,x+y-2,2*x*y}} o2 = | x2y+1 x+y-2 2xy | 1 3 o2 : Matrix R <--- R |
i3 : isProjective ker P o3 = true |
i4 : M = matrix{{-y,-z^2,0},{x,0,-z^2},{0,x^2,x*y}} o4 = | -y -z2 0 | | x 0 -z2 | | 0 x2 xy | 3 3 o4 : Matrix R <--- R |
i5 : isProjective cokernel M o5 = false |
i6 : I = ideal(x^2,x*y,z^2) 2 2 o6 = ideal (x , x*y, z ) o6 : Ideal of R |
i7 : isProjective module I o7 = false |
i8 : isProjective R^3 o8 = true |
i9 : isProjective module ideal x o9 = true |
The object isProjective is a method function.