The optional inputs given above are not relevant for Lie algebras. A Lie element $x$ is in $T$ if $x$ multiplies all the generators of $S$ into $I$. However, $T$ is not in general finitely generated.
i1 : L=lieAlgebra{a,b,c}/{a a b-c c b,b b a-b b c} o1 = L o1 : LieAlgebra |
i2 : I=lieIdeal{a} o2 = I o2 : FGLieIdeal |
i3 : S=lieSubAlgebra{b,c} o3 = S o3 : FGLieSubAlgebra |
i4 : K=quotient(I,S) o4 = K o4 : LieSubAlgebra |
i5 : basis(2,K) o5 = {(b a), (c a), (c b)} o5 : List |