tests that the differentials compose to zero.
i1 : S=ZZ/101[x,y] o1 = S o1 : PolynomialRing |
i2 : C=res ideal vars S, C'=chainComplex(matrix{{x}},matrix{{y}}) 1 2 1 1 1 1 o2 = (S <-- S <-- S <-- 0, S <-- S <-- S ) 0 1 2 3 0 1 2 o2 : Sequence |
i3 : isChainComplex C, isChainComplex C' o3 = (true, false) o3 : Sequence |
The buildin function dual for chainComplexes over the exterior algebra does not return a complex, because the dual of a left module is a right module.
i4 : kk=ZZ/101;n=4; |
i6 : E=kk[e_0..e_n,SkewCommutative =>true] o6 = E o6 : PolynomialRing, 5 skew commutative variables |
i7 : m=map(E^{0,1},,matrix{{ e_0,e_1*e_2},{e_3*e_4,e_0*e_1*e_4}}) o7 = {0} | e_0 e_1e_2 | {-1} | e_3e_4 e_0e_1e_4 | 2 2 o7 : Matrix E <--- E |
i8 : fm=res coker m 2 2 8 27 66 135 246 o8 = E <-- E <-- E <-- E <-- E <-- E <-- E 0 1 2 3 4 5 6 o8 : ChainComplex |
i9 : isChainComplex fm o9 = true |
i10 : dualfm = dual fm 246 135 66 27 8 2 2 o10 = E <-- E <-- E <-- E <-- E <-- E <-- E -6 -5 -4 -3 -2 -1 0 o10 : ChainComplex |
i11 : isChainComplex dualfm o11 = true |
i12 : f2=res( coker dualfm.dd_(-5),LengthLimit=> 6)[6] 246 135 66 27 8 2 2 o12 = E <-- E <-- E <-- E <-- E <-- E <-- E -6 -5 -4 -3 -2 -1 0 o12 : ChainComplex |
i13 : betti f2 -6 -5 -4 -3 -2 -1 0 o13 = total: 246 135 66 27 8 2 2 -2: 225 120 56 21 5 . . -1: 21 15 10 6 3 1 . 0: . . . . . 1 1 1: . . . . . . 1 o13 : BettiTally |
i14 : betti dual fm -6 -5 -4 -3 -2 -1 0 o14 = total: 246 135 66 27 8 2 2 -2: 225 120 56 21 5 . . -1: 21 15 10 6 3 1 . 0: . . . . . 1 1 1: . . . . . . 1 o14 : BettiTally |
The object isChainComplex is a method function.