This function produces has the same output map(F,G,matrix f). This function is most useful when the either source/target of $f$ is isomorphic to $F/G$ as a module with basis, but not as a labeled module.
i1 : S=QQ[x,y,z]; |
i2 : A=labeledModule(S^2) 2 o2 = S o2 : free S-module with labeled basis |
i3 : F=(A**A)**A 8 o3 = S o3 : free S-module with labeled basis |
i4 : G=A**(A**A) 8 o4 = S o4 : free S-module with labeled basis |
i5 : f=map(F,G,id_(F)) o5 = | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 | | 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 1 | 8 8 o5 : Matrix S <--- S |