i1 : R = QQ[x,y,z] o1 = R o1 : PolynomialRing |
i2 : A = matrix{{x^2*y+1,x+y-2,2*x*y}} o2 = | x2y+1 x+y-2 2xy | 1 3 o2 : Matrix R <--- R |
i3 : isUnimodular A o3 = true |
i4 : B = matrix{{x*y+x*z+y*z-1},{x^2+y^2}, {y^2+z^2}, {z^2}} o4 = | xy+xz+yz-1 | | x2+y2 | | y2+z2 | | z2 | 4 1 o4 : Matrix R <--- R |
i5 : isUnimodular B o5 = true |
i6 : I = ideal(x^2,x*y,z^2) 2 2 o6 = ideal (x , x*y, z ) o6 : Ideal of R |
i7 : isUnimodular presentation module I o7 = false |
The object isUnimodular is a method function.