next | previous | forward | backward | up | top | index | toc | Macaulay2 website
GraphicalModelsMLE :: scoreEquations(...,SampleData=>...)

scoreEquations(...,SampleData=>...) -- input sample covariance matrix instead of sample data

Synopsis

Description

scoreEquations requires a matrix or a list of sample data as part of the default input. Setting scoreEquations(...,SampleData=>...) to false allows the user to enter a sample covariance matrix instead of sample data. It must be a symmetric matrix.

i1 : G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph {{3,4}});
i2 : R=gaussianRing(G);
i3 : U = matrix{{6, 10, 1/3, 1}, {3/5, 3, 1/2, 1}, {4/5, 3/2, 9/8, 3/10}, {10/7, 2/3,1, 8/3}}

o3 = | 6    10  1/3 1    |
     | 3/5  3   1/2 1    |
     | 4/5  3/2 9/8 3/10 |
     | 10/7 2/3 1   8/3  |

              4        4
o3 : Matrix QQ  <--- QQ
i4 : J=scoreEquations(R,U,SampleData=>true)

o4 = ideal (192199680p    - 99333449, 267221621760p    - 849243924773, 1353974896462794079472640p    - 142165262245288892244817,
                      3,4                          4,4                                           3,3                            
     ----------------------------------------------------------------------------------------------------------------------------
     6898968p    - 11533057, 19600p    - 95819, 20855l    + 90447, 146915678869660815915l    - 4228634793402814499,
             2,2                   1,1                3,4                                2,3                       
     ----------------------------------------------------------------------------------------------------------------------------
     58766271547864326366l    + 4167005135395196717, 574914l    - 896035)
                          1,3                               1,2

o4 : Ideal of QQ[l   ..l   , l   , l   , p   , p   , p   , p   , p   ]
                  1,2   1,3   2,3   3,4   1,1   2,2   3,3   4,4   3,4
i5 : V=sampleCovarianceMatrix(U)

o5 = | 95819/19600 25601/3360 -2129/4480 -1313/16800 |
     | 25601/3360  867/64     -2321/2304 -173/192    |
     | -2129/4480  -2321/2304 337/3072   473/11520   |
     | -1313/16800 -173/192   473/11520  3641/4800   |

              4        4
o5 : Matrix QQ  <--- QQ
i6 : I=scoreEquations(R,V,SampleData=>false)

o6 = ideal (192199680p    - 99333449, 267221621760p    - 849243924773, 1353974896462794079472640p    - 142165262245288892244817,
                      3,4                          4,4                                           3,3                            
     ----------------------------------------------------------------------------------------------------------------------------
     6898968p    - 11533057, 19600p    - 95819, 20855l    + 90447, 146915678869660815915l    - 4228634793402814499,
             2,2                   1,1                3,4                                2,3                       
     ----------------------------------------------------------------------------------------------------------------------------
     58766271547864326366l    + 4167005135395196717, 574914l    - 896035)
                          1,3                               1,2

o6 : Ideal of QQ[l   ..l   , l   , l   , p   , p   , p   , p   , p   ]
                  1,2   1,3   2,3   3,4   1,1   2,2   3,3   4,4   3,4

Further information

See also

Functions with optional argument named SampleData :