An ordering $F_1,..F_d$ of the facets of a simplicial complex $P$ is shellable if $(F_1 \cup .. \cup F_{k-1}) \cap F_k$ is pure of dim$F_k -1$ for all $k = 2,..,d$. Determines if a list of faces is a shelling order of the simplicial complex.
i1 : P = {{1, 2, 3}, {1, 2, 5}}; |
i2 : isShelling(P) o2 = true |
i3 : Q = {{1,2,3},{3,4,5},{2,3,4}}; |
i4 : isShelling(Q) o4 = false |
The object isShelling is a method function.