This method takes an NCRing and returns the quotient of a commutative polynomial ring (or an exterior algebra, if SkewCommutative=>true) on the same generators by the defining relations of the input ring.
i1 : A = skewPolynomialRing(QQ,(-1)_QQ,{w,x,y,z}) --Calling Bergman for NCGB calculation. Complete! o1 = A o1 : NCQuotientRing |
i2 : x*y-y*x o2 = 2xy o2 : A |
i3 : w^2 2 o3 = w o3 : A |
i4 : B = toM2Ring(A) o4 = B o4 : QuotientRing |
i5 : x*y-y*x o5 = 0 o5 : B |
i6 : w^2 2 o6 = w o6 : B |
i7 : C = toM2Ring(A,SkewCommutative=>true) o7 = C o7 : PolynomialRing, 4 skew commutative variables |
i8 : x*y-y*x o8 = 2x*y o8 : C |
i9 : w^2 o9 = 0 o9 : C |
The object toM2Ring is a method function with options.