If a different number of variables is given with Variables, then the list of degrees in R will be ignored. If a new degree rank is specified with DegreeRank then the list of degrees and the heft vector of R will be ignored. If a new nonempty list of degrees is specified with Degrees, then the degree rank and and the heft vector of R will be ignored.
i1 : R = QQ[x,y,MonomialOrder => Lex,Degrees=>{3,5}]; |
i2 : describe newRing(R,MonomialOrder => GRevLex) o2 = QQ[x..y, Degrees => {3, 5}, Heft => {1}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1] {GRevLex => {3, 5} } {Position => Up } |
i3 : describe newRing(R,Variables=>4) o3 = QQ[p ..p , Degrees => {4:1}, Heft => {1}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1] 0 3 {Lex => 2 } {Position => Up } {GRevLex => {2:1} } |
i4 : describe newRing(R,Heft=>{2}) o4 = QQ[x..y, Degrees => {3, 5}, Heft => {2}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1] {Lex => 2 } {Position => Up } |
i5 : S = R/(x^2+y^3); |
i6 : describe newRing(R,Variables=>2) o6 = QQ[p ..p , Degrees => {3, 5}, Heft => {1}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1] 0 1 {Lex => 2 } {Position => Up } |
The default values for the options of newRing are all set to a non-accessible private symbol whose name is nothing.
The object newRing is a method function with options.