"findNaryTrivialMasseyOperation(DGAlgebra,List,HashTable,ZZ)" -- see findTrivialMasseyOperation -- Finds a trivial Massey operation on a set of generators of H(A)
"findTrivialMasseyOperation(DGAlgebra)" -- see findTrivialMasseyOperation -- Finds a trivial Massey operation on a set of generators of H(A)
"getBasis(ZZ,DGAlgebra)" -- see getBasis -- Get a basis for a particular homological degree of a DG algebra.
"getBoundaryPreimage(DGAlgebra,List)" -- see getBoundaryPreimage -- Attempt to find a preimage of a boundary under the differential of a DGAlgebra.
"getBoundaryPreimage(DGAlgebra,RingElement)" -- see getBoundaryPreimage -- Attempt to find a preimage of a boundary under the differential of a DGAlgebra.
"getGenerators(DGAlgebra)" -- see getGenerators -- Returns a list of cycles whose images generate HH(A) as an algebra
HH DGAlgebra -- Compute the homology algebra of a DGAlgebra.
HH_ZZ DGAlgebra -- Computes the homology of a DG algebra as a module
"homologyAlgebra(DGAlgebra)" -- see homologyAlgebra -- Compute the homology algebra of a DGAlgebra.
"homologyClass(DGAlgebra,RingElement)" -- see homologyClass -- Computes the element of the homology algebra corresponding to a cycle in a DGAlgebra.
"homologyModule(DGAlgebra,Module)" -- see homologyModule -- Compute the homology of a DGModule as a module over a DGAlgebra.
"isAcyclic(DGAlgebra)" -- see isAcyclic -- Determines if a DGAlgebra is acyclic.
isHomogeneous(DGAlgebra) -- Determine if the DGAlgebra respects the gradings of the ring it is defined over.
"isHomologyAlgebraTrivial(DGAlgebra)" -- see isHomologyAlgebraTrivial -- Determines if the homology algebra of a DGAlgebra is trivial
"killCycles(DGAlgebra)" -- see killCycles -- Adjoins variables to make non-bounding cycles boundaries in the lowest positive degree with nontrivial homology.
"liftToDGMap(DGAlgebra,DGAlgebra,RingMap)" -- see liftToDGMap -- Lift a ring homomorphism in degree zero to a DG algebra morphism
"masseyTripleProduct(DGAlgebra,RingElement,RingElement,RingElement)" -- see masseyTripleProduct -- Computes the Massey triple product of a set of cycles or homology classes