i1 : n=5; |
i2 : R=QQ[x_1..x_n]; |
i3 : buildSymmetricGB R 5 4 3 2 4 3 3 2 2 2 2 3 2 4 3 o3 = {- x + x e - x e + x e - x e + e , x + x x - x e + x x - x x e + x e + x x - x x e + x x e - x e + x - x e 5 5 1 5 2 5 3 5 4 5 4 4 5 4 1 4 5 4 5 1 4 2 4 5 4 5 1 4 5 2 4 3 5 5 1 ---------------------------------------------------------------------------------------------------------------------------- 2 3 2 2 2 2 2 3 2 2 2 + x e - x e + e , - x - x x - x x + x e - x x - x x x + x x e - x x + x x e - x e - x - x x + x e - x x + 5 2 5 3 4 3 3 4 3 5 3 1 3 4 3 4 5 3 4 1 3 5 3 5 1 3 2 4 4 5 4 1 4 5 ---------------------------------------------------------------------------------------------------------------------------- 3 2 2 2 2 2 x x e - x e - x + x e - x e + e , x + x x + x x + x x - x e + x + x x + x x - x e + x + x x - x e + x - 4 5 1 4 2 5 5 1 5 2 3 2 2 3 2 4 2 5 2 1 3 3 4 3 5 3 1 4 4 5 4 1 5 ---------------------------------------------------------------------------------------------------------------------------- x e + e , - x - x - x - x - x + e } 5 1 2 1 2 3 4 5 1 o3 : List |
This function should work up to a size of 15 variables in the base ring
This function is part of the package SymmetricPolynomials.
The object buildSymmetricGB is a method function.