Given a degree sequence $d$, this function returns the pure resolution of type $d$ constructed in by Eisenbud and Schreyer in Section 5 of ``Betti numbers of graded modules and cohomology of vector bundles''. The function operates by resolving the output of pureResES1(d,kk).
i1 : d={0,2,4,5}; |
i2 : FF=pureResES(d,ZZ/32003) ZZ 3 ZZ 10 ZZ 15 ZZ 8 o2 = (-----[x ..x ]) <-- (-----[x ..x ]) <-- (-----[x ..x ]) <-- (-----[x ..x ]) <-- 0 32003 0 2 32003 0 2 32003 0 2 32003 0 2 4 0 1 2 3 o2 : ChainComplex |
i3 : betti FF 0 1 2 3 o3 = total: 3 10 15 8 0: 3 . . . 1: . 10 . . 2: . . 15 8 o3 : BettiTally |
The object pureResES is a method function.