M1, M2 are consecutive high syzygy matrices in the minimal periodic resolution of the base ring R=S/(ideal matrix x_0..y_{(g-1)},z_1,z_2) as a module over S/(ideal qq). These are used to construct the Clifford algebra of qq.
i1 : kk=ZZ/101; |
i2 : g=1; |
i3 : rNP=randNicePencil(kk,g); |
i4 : S=rNP.qqRing; |
i5 : qq=rNP.quadraticForm; |
i6 : M1=rNP.matFact1; 8 8 o6 : Matrix S <--- S |
i7 : M2=rNP.matFact2; 8 8 o7 : Matrix S <--- S |
i8 : M1*M2 - qq*id_(S^(2^(2*g+1))) o8 = 0 8 8 o8 : Matrix S <--- S |
i9 : M1*M2 - M2*M1 o9 = 0 8 8 o9 : Matrix S <--- S |