Given a Hilbert function of a in degree d, macaulayBound yields the upper bound from Macaulay's Theorem for the Hilbert function in degree d+1.
i1 : macaulayBound(3,1) o1 = 6 |
i2 : macaulayBound(15,5) o2 = 18 |
The object macaulayBound is a method function.