This method returns true if the map f is degree 0; that is, if the generators of the source of f are mapped to elements of the same degree in the target.
i1 : A = skewPolynomialRing(QQ,(-1)_QQ,{w,x,y,z}) --Calling Bergman for NCGB calculation. Complete! o1 = A o1 : NCQuotientRing |
i2 : B = QQ{w,x,y,z}/ncIdeal{w*x+x*w,w*y+y*w,x*y+y*x} --Calling Bergman for NCGB calculation. Complete! o2 = B o2 : NCQuotientRing |
i3 : f = ncMap(B,A,gens B) o3 = NCRingMap B <--- A o3 : NCRingMap |
i4 : isHomogeneous f o4 = true |
i5 : C = QQ{a,b,c} o5 = C o5 : NCPolynomialRing |
i6 : g = ncMap(C,A,{a^3,b^2,a+b,a-b}) o6 = NCRingMap C <--- A o6 : NCRingMap |
i7 : isHomogeneous g o7 = false |
i8 : setWeights(A,{3,2,1,1}) o8 = A o8 : NCQuotientRing |
i9 : isHomogeneous g o9 = true |