i1 : kk = QQ
o1 = QQ
o1 : Ring
|
i2 : R = kk[a,b]
o2 = R
o2 : PolynomialRing
|
i3 : S = kk[z,t]
o3 = S
o3 : PolynomialRing
|
i4 : f = map(S,R,{z^2,t^2})
2 2
o4 = map(S,R,{z , t })
o4 : RingMap S <--- R
|
i5 : M = S^1/ideal(z^3,t^3)
o5 = cokernel | z3 t3 |
1
o5 : S-module, quotient of S
|
i6 : g = map(M,M,matrix{{z*t}})
o6 = | zt |
o6 : Matrix
|
i7 : p = pushFwd(f,g)
o7 = {0} | 0 0 ab 0 |
{1} | 0 0 0 b |
{2} | 1 0 0 0 |
{1} | 0 a 0 0 |
o7 : Matrix
|
i8 : kerg = pushFwd(f,ker g)
o8 = cokernel {2} | b a 0 0 0 0 0 |
{2} | 0 -b a 0 0 0 0 |
{3} | 0 0 0 b a 0 0 |
{3} | 0 0 0 0 0 b a |
4
o8 : R-module, quotient of R
|
i9 : kerp = prune ker p
o9 = cokernel {1} | b a 0 0 0 0 0 |
{1} | 0 -b a 0 0 0 0 |
{2} | 0 0 0 b a 0 0 |
{2} | 0 0 0 0 0 b a |
4
o9 : R-module, quotient of R
|