Draws a curve or surface defined implicitly or explicitly by a polynomial. The first argument is a polynomial, the second is a (list of) range(s) of variable(s). If the number of ranges is equal to the number of variables of the polynomial, the graph of the polynomial is drawn. If it is one fewer, then the zero set of the polynomial is drawn. The option Mesh specifies the number of sampled values of the variables.
i1 : R=RR[x,y]; |
i2 : P=y^2-(x+1)*(x-1)*(x-2); |
i3 : plot(P,{-2,3},"stroke-width"=>0.05,SizeY=>25,"stroke"=>"red") o3 = GraphicsList{Axes => {x, y} } cache => CacheTable{} Contents => {Path{cache => CacheTable{} }, Path{cache => CacheTable{} }} PathList => {M, | -1 |, L, | -.95 |, L, | -.9 |, L, | -.85 |, L, | -.8 |, L, | -.75 |, L, | -.7 |, L, | -.65 |, L, | -.6 |, L, | -.55 |, L, | -.5 |, L, | -.45 |, L, | -.4 |, L, | -.35 |, L, | -.3 |, L, | -.25 |, L, | -.2 |, L, | -.15 |, L, | -.1 |, L, | -.05 |, L, | 0 |, L, | .05 |, L, | .1 |, L, | .15 |, L, | .2 |, L, | .25 |, L, | .3 |, L, | .35 |, L, | .4 |, L, | .45 |, L, | .5 |, L, | .55 |, L, | .6 |, L, | .65 |, L, | .7 |, L, | .75 |, L, | .8 |, L, | .85 |, L, | .9 |, L, | .95 |, L, | 1 |, M, | 2 |, L, | 2.05 |, L, | 2.1 |, L, | 2.15 |, L, | 2.2 |, L, | 2.25 |, L, | 2.3 |, L, | 2.35 |, L, | 2.4 |, L, | 2.45 |, L, | 2.5 |, L, | 2.55 |, L, | 2.6 |, L, | 2.65 |, L, | 2.7 |, L, | 2.75 |, L, | 2.8 |, L, | 2.85 |, L, | 2.9 |, L, | 2.95 |, L, | 3 |} PathList => {M, | -1 |, L, | -.95 |, L, | -.9 |, L, | -.85 |, L, | -.8 |, L, | -.75 |, L, | -.7 |, L, | -.65 |, L, | -.6 |, L, | -.55 |, L, | -.5 |, L, | -.45 |, L, | -.4 |, L, | -.35 |, L, | -.3 |, L, | -.25 |, L, | -.2 |, L, | -.15 |, L, | -.1 |, L, | -.05 |, L, | 0 |, L, | .05 |, L, | .1 |, L, | .15 |, L, | .2 |, L, | .25 |, L, | .3 |, L, | .35 |, L, | .4 |, L, | .45 |, L, | .5 |, L, | .55 |, L, | .6 |, L, | .65 |, L, | .7 |, L, | .75 |, L, | .8 |, L, | .85 |, L, | .9 |, L, | .95 |, L, | 1 |, M, | 2 |, L, | 2.05 |, L, | 2.1 |, L, | 2.15 |, L, | 2.2 |, L, | 2.25 |, L, | 2.3 |, L, | 2.35 |, L, | 2.4 |, L, | 2.45 |, L, | 2.5 |, L, | 2.55 |, L, | 2.6 |, L, | 2.65 |, L, | 2.7 |, L, | 2.75 |, L, | 2.8 |, L, | 2.85 |, L, | 2.9 |, L, | 2.95 |, L, | 3 |} | -9.14796e-20 | | -.536307 | | -.742294 | | -.889312 | | -1.00399 | | -1.09687 | | -1.17346 | | -1.23708 | | -1.28996 | | -1.33365 | | -1.36931 | | -1.39781 | | -1.41986 | | -1.43601 | | -1.44672 | | -1.45237 | | -1.45327 | | -1.4497 | | -1.44187 | | -1.42999 | | -1.41421 | | -1.39468 | | -1.3715 | | -1.34476 | | -1.31453 | | -1.28087 | | -1.24378 | | -1.20328 | | -1.15931 | | -1.11181 | | -1.06066 | | -1.00567 | | -.946573 | | -.882964 | | -.814248 | | -.73951 | | -.657267 | | -.564911 | | -.457165 | | -.319961 | | -2.87991e-20 | | -4.40457e-20 | | -.400156 | | -.583952 | | -.73714 | | -.876356 | | -1.00778 | | -1.13446 | | -1.25812 | | -1.37986 | | -1.50037 | | -1.62019 | | -1.73965 | | -1.85903 | | -1.97854 | | -2.09833 | | -2.21853 | | -2.33923 | | -2.46051 | | -2.58244 | | -2.70506 | | -2.82843 | | 9.14796e-20 | | .536307 | | .742294 | | .889312 | | 1.00399 | | 1.09687 | | 1.17346 | | 1.23708 | | 1.28996 | | 1.33365 | | 1.36931 | | 1.39781 | | 1.41986 | | 1.43601 | | 1.44672 | | 1.45237 | | 1.45327 | | 1.4497 | | 1.44187 | | 1.42999 | | 1.41421 | | 1.39468 | | 1.3715 | | 1.34476 | | 1.31453 | | 1.28087 | | 1.24378 | | 1.20328 | | 1.15931 | | 1.11181 | | 1.06066 | | 1.00567 | | .946573 | | .882964 | | .814248 | | .73951 | | .657267 | | .564911 | | .457165 | | .319961 | | 2.87991e-20 | | 4.40457e-20 | | .400156 | | .583952 | | .73714 | | .876356 | | 1.00778 | | 1.13446 | | 1.25812 | | 1.37986 | | 1.50037 | | 1.62019 | | 1.73965 | | 1.85903 | | 1.97854 | | 2.09833 | | 2.21853 | | 2.33923 | | 2.46051 | | 2.58244 | | 2.70506 | | 2.82843 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | fill => none Is3d => false SizeY => 25 stroke => red stroke-width => .05 o3 : GraphicsList |
The object plot is a function closure.