Mu1, Mu2 are consecutive high syzygy matrices in the minimal periodic resolution of the isotropic subspace S/(ideal u) as a module over S/(ideal qq). These are used to construct a Morita bundle between the even Clifford algebra of qq and the hyperelliptic curve branched over the degeneracy locus of the pencil.
i1 : kk=ZZ/101; |
i2 : g=1; |
i3 : rNP=randNicePencil(kk,g); |
i4 : S=rNP.qqRing; |
i5 : qq=rNP.quadraticForm; |
i6 : Mu1=rNP.matFactu1; 4 4 o6 : Matrix S <--- S |
i7 : Mu2=rNP.matFactu2; 4 4 o7 : Matrix S <--- S |
i8 : Mu1*Mu2 - qq*id_(S^(2^(g+1))) o8 = 0 4 4 o8 : Matrix S <--- S |
i9 : Mu1*Mu2 - Mu2*Mu1 o9 = 0 4 4 o9 : Matrix S <--- S |