i1 : R = ZZ/101[a,b,c,d]/ideal{a^3,b^3,c^3,d^3} o1 = R o1 : QuotientRing |
i2 : A = acyclicClosure(R,EndDegree=>3) o2 = {Ring => R } Underlying algebra => R[T ..T ] 1 8 2 2 2 2 Differential => {a, b, c, d, a T , b T , c T , d T } 1 2 3 4 o2 : DGAlgebra |
The above will be a resolution of the residue field over R, since R is a complete intersection.
i3 : C = toComplex(A, 10) 1 4 10 20 35 56 84 120 165 220 286 o3 = R <-- R <-- R <-- R <-- R <-- R <-- R <-- R <-- R <-- R <-- R 0 1 2 3 4 5 6 7 8 9 10 o3 : ChainComplex |
i4 : apply(10, i -> prune HH_i(C)) o4 = {cokernel | d c b a |, 0, 0, 0, 0, 0, 0, 0, 0, 0} o4 : List |