If f:R->S is a ring map and R=A/I is a quotient ring, this method returns the NCRingMap g:A->S obtained by composing f with the natural map. This method is called by isWellDefined(NCRingMap) and can be used to determine what ideal to mod out of the target so the map becomes well-defined.
i1 : A = skewPolynomialRing(QQ,(-1)_QQ,{w,x,y,z}) --Calling Bergman for NCGB calculation. Complete! o1 = A o1 : NCQuotientRing |
i2 : B = QQ{w,x,y,z}/ncIdeal{w*x+x*w,w*y+y*w,x*y+y*x} --Calling Bergman for NCGB calculation. Complete! o2 = B o2 : NCQuotientRing |
i3 : f = ncMap(B,A,gens B) o3 = NCRingMap B <--- A o3 : NCRingMap |
i4 : isWellDefined f o4 = false |
i5 : g = ambient f o5 = NCRingMap B <--- QQ{w, x, y, z} o5 : NCRingMap |
i6 : (gens ideal A)/g o6 = {0, 0, 0, zw+wz, zx+xz, zy+yz} o6 : List |