This method returns the homogeneous degree n component of the ring map f. The output is the matrix (over the coefficient ring of the target) of the component map relative to the monomial bases for the source and target.
i1 : A = skewPolynomialRing(QQ,(-1)_QQ,{w,x,y,z}) --Calling Bergman for NCGB calculation. Complete! o1 = A o1 : NCQuotientRing |
i2 : setWeights(A,{1,1,2,2}) o2 = A o2 : NCQuotientRing |
i3 : f = ncMap(A,A,{x,w,z,y}) o3 = NCRingMap A <--- A o3 : NCRingMap |
i4 : basis(1,A) o4 = | w x | o4 : NCMatrix |
i5 : f_1 o5 = | 0 1 | | 1 0 | 2 2 o5 : Matrix QQ <--- QQ |
i6 : basis(2,A) o6 = | y z w^2 w*x x^2 | o6 : NCMatrix |
i7 : f_2 o7 = | 0 1 0 0 0 | | 1 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 -1 0 | | 0 0 1 0 0 | 5 5 o7 : Matrix QQ <--- QQ |