Let $T = (t_1,t_2,\cdots,t_k)$ be a triangular set (i.e., their main variables are distinct). $T$ is strongly normalized if the initial of each $t_i$ only involves free variables.
i1 : R = QQ[x,y,t,s,MonomialOrder=>Lex]; |
i2 : F = {x + y^2 - t, t^2 -s}; |
i3 : T = triaSystem(R,F,{}); |
i4 : isStronglyNormalized(T) o4 = true |
i5 : R = QQ[x,y,z,MonomialOrder=>Lex]; |
i6 : F = {x*y - y*z, y^2 - z^2}; |
i7 : T = triaSystem(R,F,{y}); |
i8 : isStronglyNormalized(T) o8 = false |
The object isStronglyNormalized is a method function.