Returns the saturated lexicographic ideal defining a subscheme of \mathbb{P}^{n} or Proj S with Hilbert polynomial hp or d.
i1 : QQ[t]; |
i2 : S = QQ[x,y,z,w]; |
i3 : lexIdeal(4*t, S) 5 4 2 o3 = ideal (x, y , y z ) o3 : Ideal of S |
i4 : lexIdeal(4*t, 5) 5 4 2 o4 = ideal (x , x , x , x x ) 1 0 2 2 3 o4 : Ideal of QQ[x ..x ] 0 4 |
i5 : hp = hilbertPolynomial oo o5 = - 4*P + 4*P 0 1 o5 : ProjectiveHilbertPolynomial |
i6 : lexIdeal(hp, S) 5 4 2 o6 = ideal (x, y , y z ) o6 : Ideal of S |
i7 : lexIdeal(hp, 3) 5 4 2 o7 = ideal (x , x x ) 0 0 1 o7 : Ideal of QQ[x ..x ] 0 2 |
i8 : lexIdeal(5, S) 5 o8 = ideal (y, x, z ) o8 : Ideal of S |
i9 : lexIdeal(5, 3) 5 o9 = ideal (x , x ) 0 1 o9 : Ideal of QQ[x ..x ] 0 2 |
The object lexIdeal is a method function with options.