This constructs an object of the class FormalGroupLaw out of a FormalSeries living in a PolynomialRing with two generators. The axioms of the neutral element, commutativity and associativity are checked up to the precision of s.
i1 : R=ZZ[x,y] o1 = R o1 : PolynomialRing |
i2 : s = series(x+y+x*y,2) o2 = FormalSeries{x*y + x + y, 2} o2 : FormalSeries |
i3 : f= FGL(s) o3 = FormalGroupLaw{x*y + x + y, 2} o3 : FormalGroupLaw |