i1 : ZZ/65521[x_0..x_4]; |
i2 : f = rationalMap {x_3^2-x_2*x_4,x_2*x_3-x_1*x_4,x_1*x_3-x_0*x_4,x_2^2-x_0*x_4,x_1*x_2-x_0*x_3,x_1^2-x_0*x_2}; o2 : RationalMap (quadratic rational map from PP^4 to PP^5) |
i3 : g = rationalMap(f,Dominant=>true); o3 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5) |
i4 : Y = (projectiveVariety target g) ** (projectiveVariety target g); o4 : ProjectiveVariety, 8-dimensional subvariety of PP^5 x PP^5 |
i5 : multirationalMap {f,g}; o5 : MultirationalMap (rational map from PP^4 to hypersurface in PP^5 x PP^5) |
i6 : multirationalMap({f,g},Y); o6 : MultirationalMap (rational map from PP^4 to 8-dimensional subvariety of PP^5 x PP^5) |
i7 : assert(factor oo === {f,g} and target oo === Y) |
i8 : multirationalMap {f,f,g}; o8 : MultirationalMap (rational map from PP^4 to hypersurface in PP^5 x PP^5 x PP^5) |
i9 : h = last graph f; o9 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^5) |
i10 : multirationalMap {h}; o10 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^5) |
i11 : multirationalMap {h,h}; o11 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^5 x PP^5) |
i12 : multirationalMap({h,h,h},Y ** projectiveVariety(target h)); o12 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to 13-dimensional subvariety of PP^5 x PP^5 x PP^5) |
i13 : describe oo! o13 = multi-rational map consisting of 3 rational maps source variety: 4-dimensional subvariety of PP^4 x PP^5 cut out by 9 hypersurfaces of degrees ({0, 2},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1},{1, 1}) target variety: 13-dimensional subvariety of PP^5 x PP^5 x PP^5 cut out by 2 hypersurfaces of degrees ({0, 2, 0},{2, 0, 0}) base locus: empty subscheme of PP^4 x PP^5 image: 4-dimensional subvariety of PP^5 x PP^5 x PP^5 cut out by 51 hypersurfaces of degrees ({0, 1, 1},{1, 0, 1},{0, 1, 1},{0, 1, 1},{1, 0, 1},{1, 0, 1},{0, 0, 2},{0, 1, 1},{0, 1, 1},{0, 1, 1},{0, 1, 1},{1, 0, 1},{1, 0, 1},{1, 0, 1},{1, 0, 1},{0, 1, 1},{0, 1, 1},{0, 1, 1},{0, 1, 1},{1, 0, 1},{1, 0, 1},{1, 0, 1},{1, 0, 1},{0, 1, 1},{0, 1, 1},{0, 1, 1},{0, 1, 1},{0, 1, 1},{1, 0, 1},{1, 0, 1},{1, 0, 1},{1, 0, 1},{1, 0, 1},{1, 1, 0},{1, 1, 0},{1, 1, 0},{0, 2, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{1, 1, 0},{2, 0, 0}) dominance: false -- rational map (1/3) defined by multiforms of degree {0, 1} target variety: PP^5 image: smooth quadric hypersurface in PP^5 dominance: false birationality: false degree of map: 1 projective degrees: {51, 28, 14, 6, 2} number of minimal representatives: 2, with degrees ({0, 1},{2, 0}) dimension base locus: -1 -- rational map (2/3) defined by multiforms of degree {0, 1} target variety: PP^5 image: smooth quadric hypersurface in PP^5 dominance: false birationality: false degree of map: 1 projective degrees: {51, 28, 14, 6, 2} number of minimal representatives: 2, with degrees ({0, 1},{2, 0}) dimension base locus: -1 -- rational map (3/3) defined by multiforms of degree {0, 1} target variety: PP^5 image: smooth quadric hypersurface in PP^5 dominance: false birationality: false degree of map: 1 projective degrees: {51, 28, 14, 6, 2} number of minimal representatives: 2, with degrees ({0, 1},{2, 0}) dimension base locus: -1 -- coefficient ring: ZZ/65521 |
The object multirationalMap is a method function.