Denote by C(B) the cone in \mathbb{R}^d spanned by B. This function computes on each ray of C(B) one element of B which has minimal coordinate sum, and returns a list of those elements.
i1 : a=3 o1 = 3 |
i2 : B={{a, 0}, {0, a}, {1, a-1}, {a-1, 1}} o2 = {{3, 0}, {0, 3}, {1, 2}, {2, 1}} o2 : List |
i3 : findGeneratorsOfSubalgebra B o3 = {{{3, 0}, 0}, {{0, 3}, 1}} o3 : List |
i4 : a=4 o4 = 4 |
i5 : B={{a, 0}, {2, a-2}, {1, a-1}, {a-1, 1}} o5 = {{4, 0}, {2, 2}, {1, 3}, {3, 1}} o5 : List |
i6 : findGeneratorsOfSubalgebra B o6 = {{{4, 0}, 0}, {{1, 3}, 2}} o6 : List |
i7 : B={{3, 0}, {2, 0}, {1, 1}, {0, 2}} o7 = {{3, 0}, {2, 0}, {1, 1}, {0, 2}} o7 : List |
i8 : findGeneratorsOfSubalgebra B o8 = {{{2, 0}, 1}, {{0, 2}, 3}} o8 : List |
The object findGeneratorsOfSubalgebra is a method function.