i1 : A = typeA(3) o1 = {x - x , x - x , x - x , x - x , x - x , x - x } 1 2 1 3 1 4 2 3 2 4 3 4 o1 : Hyperplane Arrangement |
i2 : I = orlikSolomon(A,e) o2 = ideal (e e - e e + e e , e e - e e + e e , e e - e e + e e , e e - e e + e e ) 4 5 4 6 5 6 2 3 2 6 3 6 1 3 1 5 3 5 1 2 1 4 2 4 o2 : Ideal of QQ[e ..e ] 1 6 |
i3 : reduceHilbert hilbertSeries I 2 3 1 + 6T + 11T + 6T o3 = ------------------- 1 o3 : Expression of class Divide |
i4 : I' = orlikSolomon(A,Projective=>true,HypAtInfinity=>2) o4 = ideal (e e - e e + e e , e e - e e + e e , e e - e e + e e , e e - e e + e e , e ) 4 5 4 6 5 6 2 3 2 6 3 6 1 3 1 5 3 5 1 2 1 4 2 4 3 o4 : Ideal of QQ[e ..e ] 1 6 |
i5 : reduceHilbert hilbertSeries I' 2 1 + 5T + 6T o5 = ------------ 1 o5 : Expression of class Divide |
The object orlikSolomon is a method function with options.