The symmetric group $S_n$ acts on $\bar{M}_{0,n}$ by permuting the marked points.
This function computes the image of a divisor class representative $C$ under a permutation $\sigma$ of the marked points.
Enter $\sigma$ as a list $\{ \sigma(1),\sigma(2),\ldots,\sigma(n)\}$. Cycle class notation is not supported for this function.
i1 : L= { {{1,3},1}, {{1,4},-3}}; |
i2 : D=divisorClassRepresentativeM0nbar(5,L); |
i3 : permute({5,2,1,3,4}, D) o3 = DivisorClassRepresentativeM0nbar{DivisorExpression => HashTable{{1, 5} => 1 }} {3, 5} => -3 NumberOfMarkedPoints => 5 o3 : DivisorClassRepresentativeM0nbar |