This method calls the Bergman function ncpbhgroebner to compute the Hilbert series of an NCQuotientRing. The input ring must be a ring over QQ or ZZ/p. At this time, the output is correct only for NCRings with a standard grading - all generators have degree 1. The output is returned as a polynomial in ZZ[T].
i1 : B = threeDimSklyanin(QQ,{1,1,-1},{x,y,z}) --Calling Bergman for NCGB calculation. Complete! o1 = B o1 : NCQuotientRing |
i2 : hilbertBergman(B,DegreeLimit=>12) --Calling bergman for HS computation. Complete! 2 3 4 5 6 7 8 9 10 o2 = 1 + 3T + 6T + 10T + 15T + 21T + 28T + 36T + 45T + 55T + 66T + ------------------------------------------------------------------------ 11 12 78T + 91T o2 : ZZ[T] |
The object hilbertBergman is a method function with options.