Given ideals I and J in a polynomial ring, we compute their join I*J:
i1 : S = QQ[x,y,z]; |
i2 : I = ideal(x^3,x^2*y^2,x*z^3,y^4,y^2*z); o2 : Ideal of S |
i3 : J = joinIdeals(I,I) 5 5 7 4 3 3 5 2 3 3 3 5 o3 = ideal (x , y z, y , x y , x z , x y z , x y ) o3 : Ideal of S |
Following Seth Sullivant's "Combinatorial symbolic powers", J. Algebra 319 (2008), no. 1, 115–142, we can compute symbolic powers of prime ideals using join:
i4 : A = QQ[x,y,z]; |
i5 : symbolicPowerJoin(ideal(x,y),2) 2 2 o5 = ideal (y , x*y, x ) o5 : Ideal of A |
i6 : f = map(QQ[t],A,{t^3,t^4,t^5}) 3 4 5 o6 = map(QQ[t],A,{t , t , t }) o6 : RingMap QQ[t] <--- A |
i7 : P = ker f; o7 : Ideal of A |
i8 : symbolicPowerJoin(P,2) 4 2 2 2 2 3 3 2 2 3 3 2 4 3 2 5 3 2 3 o8 = ideal (y - 2x*y z + x z , x y - x y*z - y z + x*z , x y - x z - y z + x*y*z , x + x*y - 3x y*z + z ) o8 : Ideal of A |