This constructs an object of the class FormalGroupPoint out of a FormalGroupLaw and a FormalSeries with the same coefficient ring and such that s has precision at most that of f.
i1 : ZZ[x,y] o1 = ZZ[x..y] o1 : PolynomialRing |
i2 : f=FGL(series(x+y+x*y,2)) o2 = FormalGroupLaw{x*y + x + y, 2} o2 : FormalGroupLaw |
i3 : ZZ[u,v] o3 = ZZ[u..v] o3 : PolynomialRing |
i4 : s = series(u+v+u^2,2) 2 o4 = FormalSeries{u + u + v, 2} o4 : FormalSeries |
i5 : p= formalGroupPoint(f,s) 2 o5 = FormalGroupPoint{FormalGroupLaw{x*y + x + y, 2}, FormalSeries{u + u + v, 2}} o5 : FormalGroupPoint |