This method creates a list of all possible graphs obtainable from the given graph by removing one edge. Notice that isomorphic graphs are allowed within the list.
i1 : R = QQ[a..e]; |
i2 : removeEdges cycle R o2 = {Graph{edges => {{b, c}, {c, d}, {a, e}, {d, e}}}, Graph{edges => {{a, b}, {b, c}, {c, d}, {d, e}}}, ring => R ring => R vertices => {a, b, c, d, e} vertices => {a, b, c, d, e} ---------------------------------------------------------------------------------------------------------------------------- Graph{edges => {{a, b}, {c, d}, {a, e}, {d, e}}}, Graph{edges => {{a, b}, {b, c}, {a, e}, {d, e}}}, ring => R ring => R vertices => {a, b, c, d, e} vertices => {a, b, c, d, e} ---------------------------------------------------------------------------------------------------------------------------- Graph{edges => {{a, b}, {b, c}, {c, d}, {a, e}}}} ring => R vertices => {a, b, c, d, e} o2 : List |
i3 : removeEdges graph {a*b, a*c, b*c, c*d, d*e} o3 = {Graph{edges => {{a, c}, {b, c}, {c, d}, {d, e}}}, Graph{edges => {{a, b}, {b, c}, {c, d}, {d, e}}}, ring => R ring => R vertices => {a, b, c, d, e} vertices => {a, b, c, d, e} ---------------------------------------------------------------------------------------------------------------------------- Graph{edges => {{a, b}, {a, c}, {c, d}, {d, e}}}, Graph{edges => {{a, b}, {a, c}, {b, c}, {d, e}}}, ring => R ring => R vertices => {a, b, c, d, e} vertices => {a, b, c, d, e} ---------------------------------------------------------------------------------------------------------------------------- Graph{edges => {{a, b}, {a, c}, {b, c}, {c, d}}}} ring => R vertices => {a, b, c, d, e} o3 : List |
If the List input format is used, then one should use care as the list may contain isomorphic pairs.
The object removeEdges is a method function with options.