i1 : V = matrix {{0,2,-2,0},{-1,1,1,1}} o1 = | 0 2 -2 0 | | -1 1 1 1 | 2 4 o1 : Matrix ZZ <--- ZZ |
i2 : P = convexHull V o2 = {ambient dimension => 2 } dimension of lineality space => 0 dimension of polyhedron => 2 number of facets => 3 number of rays => 0 number of vertices => 3 o2 : Polyhedron |
i3 : vertices P o3 = | 0 -2 2 | | -1 1 1 | 2 3 o3 : Matrix QQ <--- QQ |
i4 : (HS,v) = halfspaces P o4 = (| -1 -1 |, | 1 |) | 1 -1 | | 1 | | 0 1 | | 1 | o4 : Sequence |
i5 : hyperplanes P o5 = (0, 0) o5 : Sequence |
i6 : rays P o6 = 0 2 o6 : Matrix ZZ <--- 0 |
i7 : linSpace P o7 = 0 2 o7 : Matrix ZZ <--- 0 |
i8 : R = matrix {{1},{0},{0}} o8 = | 1 | | 0 | | 0 | 3 1 o8 : Matrix ZZ <--- ZZ |
i9 : V1 = V || matrix {{1,1,1,1}} o9 = | 0 2 -2 0 | | -1 1 1 1 | | 1 1 1 1 | 3 4 o9 : Matrix ZZ <--- ZZ |
i10 : P1 = convexHull(V1,R) o10 = {ambient dimension => 3 } dimension of lineality space => 0 dimension of polyhedron => 2 number of facets => 3 number of rays => 1 number of vertices => 2 o10 : Polyhedron |
i11 : vertices P1 o11 = | 0 -2 | | -1 1 | | 1 1 | 3 2 o11 : Matrix QQ <--- QQ |
i12 : rays P1 o12 = | 1 | | 0 | | 0 | 3 1 o12 : Matrix ZZ <--- ZZ |
i13 : hyperplanes P1 o13 = (| 0 0 1 |, | 1 |) o13 : Sequence |
i14 : HS = transpose (V || matrix {{-1,2,0,1}}) o14 = | 0 -1 -1 | | 2 1 2 | | -2 1 0 | | 0 1 1 | 4 3 o14 : Matrix ZZ <--- ZZ |
i15 : v = matrix {{1},{1},{1},{1}} o15 = | 1 | | 1 | | 1 | | 1 | 4 1 o15 : Matrix ZZ <--- ZZ |
i16 : HP = matrix {{1,1,1}} o16 = | 1 1 1 | 1 3 o16 : Matrix ZZ <--- ZZ |
i17 : w = matrix {{3}} o17 = | 3 | 1 1 o17 : Matrix ZZ <--- ZZ |
i18 : P2 = intersection(HS,v,HP,w) o18 = {ambient dimension => 3 } dimension of lineality space => 0 dimension of polyhedron => 2 number of facets => 3 number of rays => 0 number of vertices => 3 o18 : Polyhedron |
i19 : vertices P2 o19 = | 4 4 2 | | 9 5 5 | | -10 -6 -4 | 3 3 o19 : Matrix QQ <--- QQ |
i20 : P3 = intersection(HS,v) o20 = {ambient dimension => 3 } dimension of lineality space => 1 dimension of polyhedron => 3 number of facets => 3 number of rays => 0 number of vertices => 3 o20 : Polyhedron |
i21 : vertices P3 o21 = | 10/9 -2/3 -2/9 | | -7/9 -1/3 5/9 | | -2/9 -2/3 4/9 | 3 3 o21 : Matrix QQ <--- QQ |
i22 : linSpace P3 o22 = | -1 | | -2 | | 2 | 3 1 o22 : Matrix ZZ <--- ZZ |
i23 : P4 = hypercube(3,2) o23 = {ambient dimension => 3 } dimension of lineality space => 0 dimension of polyhedron => 3 number of facets => 6 number of rays => 0 number of vertices => 8 o23 : Polyhedron |
i24 : vertices P4 o24 = | -2 2 -2 2 -2 2 -2 2 | | -2 -2 2 2 -2 -2 2 2 | | -2 -2 -2 -2 2 2 2 2 | 3 8 o24 : Matrix QQ <--- QQ |
i25 : P5 = crossPolytope(3,3) o25 = {ambient dimension => 3 } dimension of lineality space => 0 dimension of polyhedron => 3 number of facets => 8 number of rays => 0 number of vertices => 6 o25 : Polyhedron |
i26 : vertices P5 o26 = | -3 3 0 0 0 0 | | 0 0 -3 3 0 0 | | 0 0 0 0 -3 3 | 3 6 o26 : Matrix QQ <--- QQ |
i27 : P6 = stdSimplex 2 o27 = {ambient dimension => 3 } dimension of lineality space => 0 dimension of polyhedron => 2 number of facets => 3 number of rays => 0 number of vertices => 3 o27 : Polyhedron |
i28 : vertices P6 o28 = | 1 0 0 | | 0 1 0 | | 0 0 1 | 3 3 o28 : Matrix QQ <--- QQ |
i29 : P7 = convexHull(P4,P5) o29 = {ambient dimension => 3 } dimension of lineality space => 0 dimension of polyhedron => 3 number of facets => 24 number of rays => 0 number of vertices => 14 o29 : Polyhedron |
i30 : vertices P7 o30 = | -3 3 0 0 0 -2 2 -2 2 -2 2 -2 2 0 | | 0 0 -3 3 0 -2 -2 2 2 -2 -2 2 2 0 | | 0 0 0 0 -3 -2 -2 -2 -2 2 2 2 2 3 | 3 14 o30 : Matrix QQ <--- QQ |
i31 : P8 = intersection(P4,P5) o31 = {ambient dimension => 3 } dimension of lineality space => 0 dimension of polyhedron => 3 number of facets => 14 number of rays => 0 number of vertices => 24 o31 : Polyhedron |
i32 : vertices P8 o32 = | -1 1 -2 2 -2 2 -1 1 -1 1 0 0 -2 2 0 0 -2 2 0 0 -1 1 0 0 | | -2 -2 -1 -1 1 1 2 2 0 0 -1 1 0 0 -2 2 0 0 -2 2 0 0 -1 1 | | 0 0 0 0 0 0 0 0 -2 -2 -2 -2 -1 -1 -1 -1 1 1 1 1 2 2 2 2 | 3 24 o32 : Matrix QQ <--- QQ |
i33 : P9 = convexHull {(V1,R),P2,P6} o33 = {ambient dimension => 3 } dimension of lineality space => 0 dimension of polyhedron => 3 number of facets => 8 number of rays => 1 number of vertices => 5 o33 : Polyhedron |
i34 : vertices P9 o34 = | 4 4 2 0 -2 | | 9 5 5 -1 1 | | -10 -6 -4 1 1 | 3 5 o34 : Matrix QQ <--- QQ |
i35 : Q = convexHull (-V) o35 = {ambient dimension => 2 } dimension of lineality space => 0 dimension of polyhedron => 2 number of facets => 3 number of rays => 0 number of vertices => 3 o35 : Polyhedron |
i36 : P10 = P + Q o36 = {ambient dimension => 2 } dimension of lineality space => 0 dimension of polyhedron => 2 number of facets => 6 number of rays => 0 number of vertices => 6 o36 : Polyhedron |
i37 : vertices P10 o37 = | -4 4 -2 2 -2 2 | | 0 0 -2 -2 2 2 | 2 6 o37 : Matrix QQ <--- QQ |
i38 : (C,L,M) = minkSummandCone P10 o38 = ({ambient dimension => 6 }, HashTable{0 => {ambient dimension => 2 }}, | 1 0 |) dimension of lineality space => 0 dimension of lineality space => 0 | 0 1 | dimension of the cone => 4 dimension of polyhedron => 1 | 1 0 | number of facets => 6 number of facets => 2 | 1 0 | number of rays => 5 number of rays => 0 | 0 1 | number of vertices => 2 1 => {ambient dimension => 2 } dimension of lineality space => 0 dimension of polyhedron => 2 number of facets => 3 number of rays => 0 number of vertices => 3 2 => {ambient dimension => 2 } dimension of lineality space => 0 dimension of polyhedron => 1 number of facets => 2 number of rays => 0 number of vertices => 2 3 => {ambient dimension => 2 } dimension of lineality space => 0 dimension of polyhedron => 1 number of facets => 2 number of rays => 0 number of vertices => 2 4 => {ambient dimension => 2 } dimension of lineality space => 0 dimension of polyhedron => 2 number of facets => 3 number of rays => 0 number of vertices => 3 o38 : Sequence |
i39 : apply(values L, vertices) o39 = {| 0 4 |, | 0 4 2 |, | 0 2 |, | 0 2 |, | 0 4 2 |} | 0 0 | | 0 0 -2 | | 0 2 | | 0 -2 | | 0 0 2 | o39 : List |
i40 : P11 = P * Q o40 = {ambient dimension => 4 } dimension of lineality space => 0 dimension of polyhedron => 4 number of facets => 6 number of rays => 0 number of vertices => 9 o40 : Polyhedron |
i41 : vertices P11 o41 = | 0 -2 2 0 -2 2 0 -2 2 | | -1 1 1 -1 1 1 -1 1 1 | | -2 -2 -2 2 2 2 0 0 0 | | -1 -1 -1 -1 -1 -1 1 1 1 | 4 9 o41 : Matrix QQ <--- QQ |
i42 : ambDim P11 o42 = 4 |
i43 : fVector P11 o43 = {9, 18, 15, 6, 1} o43 : List |
i44 : L = faces(1,P11) o44 = {{ambient dimension => 4 }, {ambient dimension => 4 }, {ambient dimension => 4 }, dimension of lineality space => 0 dimension of lineality space => 0 dimension of lineality space => 0 dimension of polyhedron => 3 dimension of polyhedron => 3 dimension of polyhedron => 3 number of facets => 5 number of facets => 5 number of facets => 5 number of rays => 0 number of rays => 0 number of rays => 0 number of vertices => 6 number of vertices => 6 number of vertices => 6 --------------------------------------------------------------------------------------------------------------------------- {ambient dimension => 4 }, {ambient dimension => 4 }, {ambient dimension => 4 }} dimension of lineality space => 0 dimension of lineality space => 0 dimension of lineality space => 0 dimension of polyhedron => 3 dimension of polyhedron => 3 dimension of polyhedron => 3 number of facets => 5 number of facets => 5 number of facets => 5 number of rays => 0 number of rays => 0 number of rays => 0 number of vertices => 6 number of vertices => 6 number of vertices => 6 o44 : List |
i45 : apply(L,vertices) o45 = {| 0 -2 0 -2 0 -2 |, | 0 2 0 2 0 2 |, | -2 2 -2 2 -2 2 |, | 0 -2 2 0 -2 2 |, | 0 -2 2 0 -2 2 |, | 0 -2 2 | -1 1 -1 1 -1 1 | | -1 1 -1 1 -1 1 | | 1 1 1 1 1 1 | | -1 1 1 -1 1 1 | | -1 1 1 -1 1 1 | | -1 1 1 | -2 -2 2 2 0 0 | | -2 -2 2 2 0 0 | | -2 -2 2 2 0 0 | | -2 -2 -2 2 2 2 | | -2 -2 -2 0 0 0 | | 2 2 2 | -1 -1 -1 -1 1 1 | | -1 -1 -1 -1 1 1 | | -1 -1 -1 -1 1 1 | | -1 -1 -1 -1 -1 -1 | | -1 -1 -1 1 1 1 | | -1 -1 -1 --------------------------------------------------------------------------------------------------------------------------- 0 -2 2 |} -1 1 1 | 0 0 0 | 1 1 1 | o45 : List |
i46 : L = latticePoints P11 o46 = {| 0 |, | 0 |, | 0 |, | 0 |, | 0 |, | 0 |, | 0 |, | 0 |, | 0 |, | -1 |, | -1 |, | -1 |, | -1 |, | -1 |, | -1 |, | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | | -2 | | -1 | | 0 | | 1 | | 2 | | -1 | | 0 | | 1 | | 0 | | -2 | | -1 | | 0 | | 1 | | 2 | | -1 | | | -1 | | -1 | | -1 | | -1 | | -1 | | 0 | | 0 | | 0 | | 1 | | -1 | | -1 | | -1 | | -1 | | -1 | | 0 | | --------------------------------------------------------------------------------------------------------------------------- -1 |, | -1 |, | -1 |, | 0 |, | 0 |, | 0 |, | 0 |, | 0 |, | 0 |, 0, | 0 |, | 0 |, | 1 |, | 1 |, | 1 |, | 1 |, | 1 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 0 | | 1 | | 0 | | -2 | | -1 | | 0 | | 1 | | 2 | | -1 | | 1 | | 0 | | -2 | | -1 | | 0 | | 1 | | 2 0 | | 0 | | 1 | | -1 | | -1 | | -1 | | -1 | | -1 | | 0 | | 0 | | 1 | | -1 | | -1 | | -1 | | -1 | | -1 --------------------------------------------------------------------------------------------------------------------------- |, | 1 |, | 1 |, | 1 |, | 1 |, | -2 |, | -2 |, | -2 |, | -2 |, | -2 |, | -1 |, | -1 |, | -1 |, | -1 |, | -1 |, | 0 |, | | | 0 | | 0 | | 0 | | 0 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | | | -1 | | 0 | | 1 | | 0 | | -2 | | -1 | | 0 | | 1 | | 2 | | -2 | | -1 | | 0 | | 1 | | 2 | | -2 | | | | 0 | | 0 | | 0 | | 1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | --------------------------------------------------------------------------------------------------------------------------- 0 |, | 0 |, | 0 |, | 0 |, | 1 |, | 1 |, | 1 |, | 1 |, | 1 |, | 2 |, | 2 |, | 2 |, | 2 |, | 2 |, | -2 |, | -1 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 -1 | | 0 | | 1 | | 2 | | -2 | | -1 | | 0 | | 1 | | 2 | | -2 | | -1 | | 0 | | 1 | | 2 | | -1 | | -1 -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | -1 | | 0 | | 0 --------------------------------------------------------------------------------------------------------------------------- |, | 0 |, | 1 |, | 2 |, | -2 |, | -1 |, | 0 |, | 1 |, | 2 |, | -2 |, | -1 |, | 0 |, | 1 |, | 2 |, | -2 |, | -1 |, | 0 |, | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | | -1 | | -1 | | -1 | | 0 | | 0 | | 0 | | 0 | | 0 | | 1 | | 1 | | 1 | | 1 | | 1 | | 0 | | 0 | | 0 | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 1 | | 1 | | 1 | --------------------------------------------------------------------------------------------------------------------------- | 1 |, | 2 |} | 1 | | 1 | | 0 | | 0 | | 1 | | 1 | o46 : List |
i47 : #L o47 = 81 |
i48 : C = tailCone P1 o48 = {ambient dimension => 3 } dimension of lineality space => 0 dimension of the cone => 1 number of facets => 1 number of rays => 1 o48 : Cone |
i49 : rays C o49 = | 1 | | 0 | | 0 | 3 1 o49 : Matrix ZZ <--- ZZ |
i50 : P12 = polar P11 o50 = {ambient dimension => 4 } dimension of lineality space => 0 dimension of polyhedron => 4 number of facets => 9 number of rays => 0 number of vertices => 6 o50 : Polyhedron |
i51 : vertices P12 o51 = | 0 -1 1 0 0 0 | | -1 1 1 0 0 0 | | 0 0 0 -1 1 0 | | 0 0 0 -1 -1 1 | 4 6 o51 : Matrix QQ <--- QQ |