i1 : R = QQ[x,y,z] o1 = R o1 : PolynomialRing |
i2 : f = x^2+3*y-2*z 2 o2 = x + 3y - 2z o2 : R |
i3 : I = ideal(x+3*y^2-2*z, x^2-2*y-z, 3*x-4*y+5*z^2) 2 2 2 o3 = ideal (3y + x - 2z, x - 2y - z, 5z + 3x - 4y) o3 : Ideal of R |
i4 : M = compMatr(I,f) o4 = | 0 0 0 0 0 0 0 0 | | 0 0 0 3/5 0 -5/3 -26/15 3/5 | | 0 5 0 8/3 -4/5 0 3/5 0 | | 0 0 -1 0 5 0 0 0 | | 0 -1 10/3 -8/15 0 0 -5/3 0 | | 5 0 -10/3 -24/5 6/5 0 8/3 -4/5 | | 0 0 0 -41/15 0 -1 0 5 | | -1 0 -5/3 -14/15 3/5 10/3 -8/15 0 | / R \8 / R \8 o4 : Matrix |------------------------------------------| <--- |------------------------------------------| | 2 2 2 | | 2 2 2 | \(3y + x - 2z, x - 2y - z, 5z + 3x - 4y)/ \(3y + x - 2z, x - 2y - z, 5z + 3x - 4y)/ |
The object compMatr is a method function.