A Dynkin diagram contains lists representing vertices of the Dynkin diagram (in other words a simple root). Each of these lists contains sublists of end points of an edge from the vertex. There are in this order, the simple edges, double edge to a smaller root, double edge to a larger root, triple edge to a smaller root, triple edge to a larger root. If there is no such edge, we have an empty sublist.
i1 : dynkinDiagram(rootSystemB(4)) o1 = DynkinDiagram{{{2}, {}, {}, {}, {}}, {{1, 3}, {}, {}, {}, {}}, {{2}, {4}, {}, {}, {}}, {{}, {}, {3}, {}, {}}} o1 : DynkinDiagram |
i2 : dynkinDiagram(rootSystemD(4)) o2 = DynkinDiagram{{{2}, {}, {}, {}, {}}, {{1, 3, 4}, {}, {}, {}, {}}, {{2}, {}, {}, {}, {}}, {{2}, {}, {}, {}, {}}} o2 : DynkinDiagram |
The object DynkinDiagram is a type, with ancestor classes BasicList < Thing.