The testing passes through the methods projectiveDegrees, degreeMap and isDominant.
i1 : GF(331^2)[t_0..t_4] o1 = GF 109561[t ..t ] 0 4 o1 : PolynomialRing |
i2 : phi = rationalMap(minors(2,matrix{{t_0..t_3},{t_1..t_4}}),Dominant=>infinity) o2 = -- rational map -- source: Proj(GF 109561[t , t , t , t , t ]) 0 1 2 3 4 target: subvariety of Proj(GF 109561[x , x , x , x , x , x ]) defined by 0 1 2 3 4 5 { x x - x x + x x 2 3 1 4 0 5 } defining forms: { 2 - t + t t , 1 0 2 - t t + t t , 1 2 0 3 2 - t + t t , 2 1 3 - t t + t t , 1 3 0 4 - t t + t t , 2 3 1 4 2 - t + t t 3 2 4 } o2 : RationalMap (quadratic dominant rational map from PP^4 to hypersurface in PP^5) |
i3 : time isBirational phi -- used 0.0267658 seconds o3 = true |
i4 : time isBirational(phi,MathMode=>true) MathMode: output certified! -- used 0.050427 seconds o4 = true |
The object isBirational is a method function with options.