This function computes the invariants of a group-based phylogenetic tree model based on theorem 24 of the paper Toric Ideals of Phylogenetic Invariants by Sturmfels and Sullivant.
Invariants are formed in three different ways. The linear and quadratic invariants are computed as in phyloToricLinears and phyloToricQuads respectively. Finally higher degree invariants are built using a fiber product construction from the invariants of claw trees.
In particular, the neighborhood of any internal vertex of a tree is a claw tree. The invariants on this claw tree tree subgraph are extended to invariants on the entire graph in various ways.
i1 : T = leafTree(4, {{0,1}}) o1 = {{0, 1, 2, 3}, {set {0, 1}, set {0}, set {1}, set {2}, set {3}}} o1 : LeafTree |
i2 : phyloToricFP(T, CFNmodel) o2 = ideal (- q q + q q , q q - q q , q q - q q , - 0,0,1,1 1,1,0,0 0,0,0,0 1,1,1,1 0,0,1,1 1,1,0,0 0,0,0,0 1,1,1,1 0,0,1,1 1,1,0,0 0,0,0,0 1,1,1,1 ---------------------------------------------------------------------------------------------------------------------------- q q + q q , - q q + q q , q q - q q , 0,0,1,1 1,1,0,0 0,0,0,0 1,1,1,1 0,1,1,0 1,0,0,1 0,1,0,1 1,0,1,0 0,1,1,0 1,0,0,1 0,1,0,1 1,0,1,0 ---------------------------------------------------------------------------------------------------------------------------- q q - q q , - q q + q q ) 0,1,1,0 1,0,0,1 0,1,0,1 1,0,1,0 0,1,1,0 1,0,0,1 0,1,0,1 1,0,1,0 o2 : Ideal of QQ[q , q , q , q , q , q , q , q ] 0,0,0,0 0,0,1,1 0,1,0,1 0,1,1,0 1,0,0,1 1,0,1,0 1,1,0,0 1,1,1,1 |
The object phyloToricFP is a method function with options.