i2 : I = monomialCurveIdeal(R,{1,2,3})
2 2
o2 = ideal (c - b*d, b*c - a*d, b - a*c)
o2 : Ideal of R
|
i3 : M = Ext^1(I,R)
-- ker (41) called with OptionTable: OptionTable{SubringLimit => infinity}
-- ker (41) returned CacheFunction: -*a cache function*-
-- ker (41) called with Matrix: 0
-- 2
-- ker (41) returned Module: R
assert( ker(map(R^0,R^{{3}, {3}},0)) === (R^{{3}, {3}}))
-- ker (42) called with OptionTable: OptionTable{SubringLimit => infinity}
-- ker (42) returned CacheFunction: -*a cache function*-
-- ker (42) called with Matrix: 0
-- 3
-- ker (42) returned Module: R
assert( ker(map(R^0,R^{{2}, {2}, {2}},0)) === (R^{{2}, {2}, {2}}))
o3 = cokernel {-3} | c b a |
{-3} | d c b |
2
o3 : R-module, quotient of R
|
i5 : N = Ext^0(I,R)
-- ker (43) called with OptionTable: OptionTable{SubringLimit => infinity}
-- ker (43) returned CacheFunction: -*a cache function*-
-- ker (43) called with Matrix: {-3} | b -c d |
-- {-3} | a -b c |
-- ker (43) returned Module: image {-2} | c2-bd |
-- {-2} | bc-ad |
-- {-2} | b2-ac |
assert( ker(map(R^{{3}, {3}},R^{{2}, {2}, {2}},{{b,-c,d}, {a,-b,c}})) === (image(map(R^{{2}, {2}, {2}},R^1,{{c^2-b*d}, {b*c-a*d}, {b^2-a*c}}))))
o5 = image {-2} | c2-bd |
{-2} | bc-ad |
{-2} | b2-ac |
3
o5 : R-module, submodule of R
|