Gives the branch equation of the set of points over which the associated quadratic form is singular. It is same as the determinant of the symmetric matrix M.symmetricM.
i1 : kk=ZZ/101; |
i2 : g=1; |
i3 : rNP=randNicePencil(kk,g); |
i4 : M=cliffordModule(rNP.matFact1,rNP.matFact2,rNP.baseRing) o4 = CliffordModule{...6...} o4 : CliffordModule |
i5 : f=M.hyperellipticBranchEquation 3 2 2 3 4 o5 = - 12s t - 50s t - 16s*t + 47t o5 : kk[s, t] |
i6 : sM=M.symmetricM o6 = | -5t -50s 6t -6t | | -50s 0 -9t 5t | | 6t -9t -s-30t 3t | | -6t 5t 3t -48t | 4 4 o6 : Matrix (kk[s, t]) <--- (kk[s, t]) |
i7 : f == det sM o7 = true |
The object hyperellipticBranchEquation is a symbol.