i1 : P = convexHull matrix{{1,0,0,0},{0,1,0,0},{0,0,1,0}} o1 = {ambient dimension => 3 } dimension of lineality space => 0 dimension of polyhedron => 3 number of facets => 4 number of rays => 0 number of vertices => 4 o1 : Polyhedron |
i2 : F = normalFan P o2 = {ambient dimension => 3 } number of generating cones => 4 number of rays => 4 top dimension of the cones => 3 o2 : Fan |
i3 : F1 = skeleton(2,F) o3 = {ambient dimension => 3 } number of generating cones => 6 number of rays => 4 top dimension of the cones => 2 o3 : Fan |
i4 : apply(maxCones F1,rays) o4 = {| 1 -1 |, | 0 -1 |, | 1 0 |, | 0 0 |, | 1 0 |, | -1 0 |} | 0 -1 | | 1 -1 | | 0 0 | | 1 0 | | 0 1 | | -1 0 | | 0 -1 | | 0 -1 | | 0 1 | | 0 1 | | 0 0 | | -1 1 | o4 : List |
i5 : PC = polyhedralComplex hypercube 3 o5 = {ambient dimension => 3 } number of generating polyhedra => 1 top dimension of the polyhedra => 3 o5 : PolyhedralComplex |
i6 : PC1 = skeleton(2,PC) o6 = {ambient dimension => 3 } number of generating polyhedra => 6 top dimension of the polyhedra => 2 o6 : PolyhedralComplex |
i7 : apply(maxPolyhedra PC1,vertices) o7 = {| -1 1 -1 1 |, | -1 -1 -1 -1 |, | -1 1 -1 1 |, | 1 1 1 1 |, | -1 1 -1 1 |, | -1 1 -1 1 |} | -1 -1 1 1 | | -1 1 -1 1 | | 1 1 1 1 | | -1 1 -1 1 | | -1 -1 -1 -1 | | -1 -1 1 1 | | -1 -1 -1 -1 | | -1 -1 1 1 | | -1 -1 1 1 | | -1 -1 1 1 | | -1 -1 1 1 | | 1 1 1 1 | o7 : List |
The object skeleton is a method function.