Note that the Schubert basis used here is in "Fulton-style" notation; see schubertCycle.
i1 : A = flagBundle({3,3},VariableNames => H) o1 = A o1 : a flag bundle with subquotient ranks {2:3} |
i2 : S = first bundles A o2 = S o2 : an abstract sheaf of rank 3 on A |
i3 : G = flagBundle({1,2},S,VariableNames => K) o3 = G o3 : a flag bundle with subquotient ranks {1..2} |
i4 : RG = intersectionRing G o4 = RG o4 : QuotientRing |
i5 : c = H_(2,3)*((K_(2,1))^2) + H_(1,1)*K_(2,2) 2 o5 = - H K + (H K - H H K - H H + H H ) 2,1 2,2 2,3 2,2 2,1 2,3 2,1 2,1 2,3 2,2 2,3 o5 : RG |
i6 : toSchubertBasis c 2 o6 = (- H H + H H )s - H H s + (H - H )s 2,1 2,3 2,2 2,3 {0} 2,1 2,3 {1} 2,3 2,1 {2} o6 : Schubert Basis of G(1,3) over A |
The object toSchubertBasis is a method function.