On $\bar{M}_{0,n}$, the divisor kappa may be defined by $K + \Delta$, where $K$ is the canonical divisor, and $\Delta$ is the sum of the boundary classes $B_i$. A fun fact is that kappa . $F_{I_1,I_2,I_3,I_4} =1$ for every F curve.
i1 : kappaDivisorM0nbar(14) 11 20 27 32 35 36 o1 = --*B + --*B + --*B + --*B + --*B + --*B 13 2 13 3 13 4 13 5 13 6 13 7 o1 : S_14-symmetric divisor on M-0-14-bar |
The object kappaDivisorM0nbar is a method function.