Forms the tensor product of the objects in the input list or sequence. In the case where the inputs are of type LabeledModule, the output is a labeled module whose basis list is the set of tuples of elements of the basis lists of the input modules
i1 : S = ZZ/101[x,y] o1 = S o1 : PolynomialRing |
i2 : M = labeledModule(S^4) 4 o2 = S o2 : free S-module with labeled basis |
i3 : basisList M o3 = {0, 1, 2, 3} o3 : List |
i4 : E = exteriorPower(2,M) 6 o4 = S o4 : free S-module with labeled basis |
i5 : basisList E o5 = {{0, 1}, {0, 2}, {1, 2}, {0, 3}, {1, 3}, {2, 3}} o5 : List |
i6 : underlyingModules E 4 o6 = {S } o6 : List |
i7 : N = tensorProduct(E,labeledModule(S^2)) 12 o7 = S o7 : free S-module with labeled basis |
i8 : basisList N o8 = {{{0, 1}, 0}, {{0, 1}, 1}, {{0, 2}, 0}, {{0, 2}, 1}, {{1, 2}, 0}, {{1, 2}, 1}, {{0, 3}, 0}, {{0, 3}, 1}, {{1, 3}, 0}, {{1, ---------------------------------------------------------------------------------------------------------------------------- 3}, 1}, {{2, 3}, 0}, {{2, 3}, 1}} o8 : List |
i9 : underlyingModules N 6 2 o9 = {S , S } o9 : List |
The object tensorProduct is a method function with a single argument.