i1 : R = ZZ/101[a,b,c]/ideal{a^3+b^3+c^3,a*b*c} o1 = R o1 : QuotientRing |
i2 : K1 = koszulComplexDGA(ideal vars R,Variable=>"Y") o2 = {Ring => R } Underlying algebra => R[Y ..Y ] 1 3 Differential => {a, b, c} o2 : DGAlgebra |
i3 : K2 = koszulComplexDGA(ideal {b,c},Variable=>"T") o3 = {Ring => R } Underlying algebra => R[T ..T ] 1 2 Differential => {b, c} o3 : DGAlgebra |
i4 : g = dgAlgebraMap(K1,K2,matrix{{Y_2,Y_3}}) o4 = map(R[Y ..Y ],R[T ..T ],{Y , Y , a, b, c}) 1 3 1 2 2 3 o4 : DGAlgebraMap |
i5 : isWellDefined g o5 = true |
The function does not check that the DG algebra map is well defined, however.
i6 : f = dgAlgebraMap(K2,K1,matrix{{0,T_1,T_2}}) o6 = map(R[T ..T ],R[Y ..Y ],{0, T , T , a, b, c}) 1 2 1 3 1 2 o6 : DGAlgebraMap |
i7 : isWellDefined f o7 = false |
The object dgAlgebraMap is a method function.