We randomly choose an $r \times\ n$ matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00316663, .00167288) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .0088687, .0669432) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.0100737, .0236}, {.00988008, .0080811}, {.0104173, .0125779}, {.00991735, .0187248}, {.0103583, .0252814}, {.0109722, ---------------------------------------------------------------------------------------------------------------------------- .0238022}, {.0110536, .0156721}, {.0287281, .0143275}, {.00884604, .0102377}, {.0114207, .0151932}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .0121667448 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .0167497653 o7 : RR (of precision 53) |
The object testTimeForLLLonSyzygies is a method function with options.