the underlying pencil of quadratic forms
i1 : kk = ZZ/101 o1 = kk o1 : QuotientRing |
i2 : g = 1 o2 = 1 |
i3 : (S, qq, R, u, M1, M2, Mu1, Mu2)=randomNicePencil(kk,g); |
i4 : M = cliffordModule(M1,M2, R) o4 = CliffordModule{...6...} o4 : CliffordModule |
i5 : M.symmetricM o5 = | -5t -50s 6t -6t | | -50s 0 -9t 5t | | 6t -9t -s-30t 3t | | -6t 5t 3t -48t | 4 4 o5 : Matrix R <--- R |
this can also be obtained by
i6 : symMatrix(M.evenOperators,M.oddOperators) o6 = | -5t -50s 6t -6t | | -50s 0 -9t 5t | | 6t -9t -s-30t 3t | | -6t 5t 3t -48t | 4 4 o6 : Matrix R <--- R |
The object symmetricM is a symbol.