This command allows for the product of composable NCMatrices (or ordinary matrices over the base).
i1 : B = threeDimSklyanin(QQ,{1,1,-1},{x,y,z}) --Calling Bergman for NCGB calculation. Complete! o1 = B o1 : NCQuotientRing |
i2 : M = ncMatrix {{x, y, z}} o2 = | x y z | o2 : NCMatrix |
i3 : sigma = ncMap(B,B,{y,z,x}) o3 = NCRingMap B <--- B o3 : NCRingMap |
i4 : N = ncMatrix {{M},{sigma M}, {sigma sigma M}} o4 = | x y z | | y z x | | z x y | o4 : NCMatrix |
i5 : L = map(QQ^3,QQ^3,{{2,0,0},{1,2,0},{1,2,3}}) o5 = | 2 0 0 | | 1 2 0 | | 1 2 3 | 3 3 o5 : Matrix QQ <--- QQ |
i6 : L*N o6 = | 2*x 2*y 2*z | | 2*y+x 2*z+y z+2*x | | 3*z+2*y+x 2*z+y+3*x z+3*y+2*x | o6 : NCMatrix |