i1 : X = base(5, n, Bundle => (E,3,c), Bundle => (T,5,t), Bundle => (L,1,{h})) o1 = X o1 : an abstract variety of dimension 5 |
i2 : X.TangentBundle = T o2 = T o2 : an abstract sheaf of rank 5 on X |
i3 : Y = sectionZeroLocus E o3 = Y o3 : an abstract variety of dimension 2 |
i4 : Y.TautologicalLineBundle = OO_Y(h) o4 = a sheaf o4 : an abstract sheaf of rank 1 on Y |
i5 : chern tangentBundle Y 2 o5 = 1 + (- c + t ) + (c - c t - c + t ) 1 1 1 1 1 2 2 o5 : QQ[n, c ..c , t ..t , h][] 1 3 1 5 |
i6 : integral oo 2 o6 = integral(c c - c c t - c c + c t ) 1 3 1 3 1 2 3 3 2 o6 : Expression of class Adjacent |
i7 : chi ((tangentBundle Y)(n)) 2 2 1 2 3 7 2 5 5 o7 = integral(n c h - 2n*c c h + 2n*c t h + -c c - -c c t + -c t + -c c - -c t ) 3 1 3 3 1 3 1 3 2 1 3 1 6 3 1 6 2 3 6 3 2 o7 : Expression of class Adjacent |
The intersection ring provided for the zero locus contains only those classes arising by pull-back from the ambient variety: there is no algorithm to compute the intersection ring.