Every (hyper)graph is defined over some polynomial ring. This method returns the ring of a hypergraph.
i1 : S = QQ[a..d]; |
i2 : g = cycle S; |
i3 : h = inducedHyperGraph(g,{a,b,c}); |
i4 : describe ring g o4 = QQ[a..d, Degrees => {4:1}, Heft => {1}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1] {GRevLex => {4:1} } {Position => Up } |
i5 : describe ring h o5 = QQ[a..c, Degrees => {3:1}, Heft => {1}, MonomialOrder => {MonomialSize => 32}, DegreeRank => 1] {GRevLex => {3:1} } {Position => Up } |