Boundary complex of a cyclic polytope of dimension d on the variables of R as vertices, i.e., $\Delta(d,m)$ if m is the number of variables of R.
i1 : K=QQ; |
i2 : R=K[x_0..x_6]; |
i3 : C=delta(4,R) o3 = | x_3x_4x_5x_6 x_0x_4x_5x_6 x_2x_3x_5x_6 x_1x_2x_5x_6 x_0x_1x_5x_6 x_0x_3x_4x_6 x_0x_2x_3x_6 x_0x_1x_2x_6 x_2x_3x_4x_5 x_1x_2x_4x_5 x_0x_1x_4x_5 x_1x_2x_3x_4 x_0x_1x_3x_4 x_0x_1x_2x_3 | o3 : SimplicialComplex |
i4 : fVector C o4 = HashTable{-1 => 1} 0 => 7 1 => 21 2 => 28 3 => 14 o4 : HashTable |
i5 : I=ideal C o5 = ideal (x x x , x x x , x x x , x x x , x x x , x x x , x x x ) 0 2 4 0 2 5 0 3 5 1 3 5 1 3 6 1 4 6 2 4 6 o5 : Ideal of R |
i6 : betti res I 0 1 2 3 o6 = total: 1 7 7 1 0: 1 . . . 1: . . . . 2: . 7 7 . 3: . . . . 4: . . . 1 o6 : BettiTally |
The object delta is a method function.