 |
My Project
debian-1:4.1.2-p1+ds-2
|
Go to the source code of this file.
|
static void | find_subst_for_map (const ring preimage_r, const ring image_r, const ideal image, int &var, poly &p) |
|
ideal | maMapIdeal (const ideal map_id, const ring preimage_r, const ideal image_id, const ring image_r, const nMapFunc nMap) |
| polynomial map for ideals/module/matrix map_id: the ideal to map map_r: the base ring for map_id image_id: the image of the variables image_r: the base ring for image_id nMap: map for coeffcients More...
|
|
poly | maMapPoly (const poly map_p, const ring map_r, const ideal image_id, const ring image_r, const nMapFunc nMap) |
| polynomial map for poly (vector) map_p: the poly (vector) to map map_r: the base ring for map_p image_id: the image of the variables image_r: the base ring for image_id nMap: map for coeffcients More...
|
|
number | maEvalAt (const poly p, const number *pt, const ring r) |
| evaluate the polynomial p at the pt given by the array pt More...
|
|
◆ find_subst_for_map()
static void find_subst_for_map |
( |
const ring |
preimage_r, |
|
|
const ring |
image_r, |
|
|
const ideal |
image, |
|
|
int & |
var, |
|
|
poly & |
p |
|
) |
| |
|
static |
◆ maEvalAt()
evaluate the polynomial p at the pt given by the array pt
Definition at line 167 of file gen_maps.cc.
170 for(
int i=r->N-1;
i>=0;
i--)
◆ maMapIdeal()
polynomial map for ideals/module/matrix map_id: the ideal to map map_r: the base ring for map_id image_id: the image of the variables image_r: the base ring for image_id nMap: map for coeffcients
Definition at line 87 of file gen_maps.cc.
113 && (map_id->nrows==1)
114 && (map_id->rank==1))
127 if ((t==0) || (t>1)) sz_more++;
129 if (((sz_l > sz*2) && (sz_more != 1))||(sz<5))
139 int C=((
matrix)map_id)->cols();
140 int R=((
matrix)map_id)->rows();
142 int N = preimage_r->N;
145 for (
i=
R*C-1;
i>=0;
i--)
147 if (map_id->m[
i]!=
NULL)
149 m->m[
i]=
maEval((
map)image_id, map_id->m[
i], preimage_r, nMap, (ideal)cache, image_r);
155 ii->rank=((ideal)map_id)->rank;
◆ maMapPoly()
polynomial map for poly (vector) map_p: the poly (vector) to map map_r: the base ring for map_p image_id: the image of the variables image_r: the base ring for image_id nMap: map for coeffcients
Definition at line 159 of file gen_maps.cc.
162 poly
p=
maEval((
map)image_id, map_p, map_r, nMap, (ideal)
s, image_r);
static int si_min(const int a, const int b)
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
matrix ma_ApplyPermForMap(const matrix to_map, const ring preimage_r, const ideal image, const ring image_r, const nMapFunc nMap)
helper function for maMapIdeal mapping ideal/matrix/module for the case of a permutation: maps the id...
int maMaxDeg_Ma(ideal a, ring preimage_r)
#define idDelete(H)
delete an ideal
poly maMapPoly(const poly map_p, const ring map_r, const ideal image_id, const ring image_r, const nMapFunc nMap)
polynomial map for poly (vector) map_p: the poly (vector) to map map_r: the base ring for map_p image...
CanonicalForm map(const CanonicalForm &primElem, const Variable &alpha, const CanonicalForm &F, const Variable &beta)
map from to such that is mapped onto
int p_IsUnivariate(poly p, const ring r)
return i, if poly depends only on var(i)
number ndCopyMap(number a, const coeffs aRing, const coeffs r)
const CanonicalForm CFMap CFMap & N
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff 'n' represents the one element.
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
static unsigned pLength(poly a)
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
void PrintS(const char *s)
static void find_subst_for_map(const ring preimage_r, const ring image_r, const ideal image, int &var, poly &p)
int maMaxDeg_P(poly p, ring preimage_r)
matrix mpNew(int r, int c)
create a r x c zero-matrix
ideal fast_map_common_subexp(const ideal map_id, const ring map_r, const ideal image_id, const ring image_r)
static void p_LmFree(poly p, ring)
ideal id_SubstPoly(ideal id, int var, poly image, const ring preimage_r, const ring image_r, const nMapFunc nMap)
poly p_NSet(number n, const ring r)
returns the poly representing the number n, destroys n
ideal idInit(int idsize, int rank)
initialise an ideal / module
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
const Variable & v
< [in] a sqrfree bivariate poly
const CanonicalForm int s
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
poly maEval(map theMap, poly p, ring preimage_r, nMapFunc nMap, ideal s, const ring dst_r)