My Project  debian-1:4.1.2-p1+ds-2
ipshell.cc
Go to the documentation of this file.
1 /****************************************
2 * Computer Algebra System SINGULAR *
3 ****************************************/
4 /*
5 * ABSTRACT:
6 */
7 
8 #include "kernel/mod2.h"
9 
10 #include "factory/factory.h"
11 
12 #include "misc/options.h"
13 #include "misc/mylimits.h"
14 #include "misc/intvec.h"
15 #include "misc/prime.h"
16 
17 #include "coeffs/numbers.h"
18 #include "coeffs/coeffs.h"
19 
20 #include "coeffs/rmodulon.h"
21 #include "coeffs/longrat.h"
22 
23 #include "polys/monomials/ring.h"
24 #include "polys/monomials/maps.h"
25 
26 #include "polys/prCopy.h"
27 #include "polys/matpol.h"
28 
29 #include "polys/weight.h"
30 #include "polys/clapsing.h"
31 
32 
35 
36 #include "kernel/polys.h"
37 #include "kernel/ideals.h"
38 
41 
42 #include "kernel/GBEngine/syz.h"
43 #include "kernel/GBEngine/kstd1.h"
44 #include "kernel/GBEngine/kutil.h" // denominator_list
45 
48 
49 #include "kernel/spectrum/semic.h"
50 #include "kernel/spectrum/splist.h"
52 
54 
55 #include "Singular/lists.h"
56 #include "Singular/attrib.h"
57 #include "Singular/ipconv.h"
58 #include "Singular/links/silink.h"
59 #include "Singular/ipshell.h"
60 #include "Singular/maps_ip.h"
61 #include "Singular/tok.h"
62 #include "Singular/ipid.h"
63 #include "Singular/subexpr.h"
64 #include "Singular/fevoices.h"
65 #include "Singular/sdb.h"
66 
67 #include <cmath>
68 #include <ctype.h>
69 
70 #include "kernel/maps/gen_maps.h"
71 
72 #ifdef SINGULAR_4_2
73 #include "Singular/number2.h"
74 #include "coeffs/bigintmat.h"
75 #endif
78 const char *lastreserved=NULL;
79 
81 
82 /*0 implementation*/
83 
84 const char * iiTwoOps(int t)
85 {
86  if (t<127)
87  {
88  STATIC_VAR char ch[2];
89  switch (t)
90  {
91  case '&':
92  return "and";
93  case '|':
94  return "or";
95  default:
96  ch[0]=t;
97  ch[1]='\0';
98  return ch;
99  }
100  }
101  switch (t)
102  {
103  case COLONCOLON: return "::";
104  case DOTDOT: return "..";
105  //case PLUSEQUAL: return "+=";
106  //case MINUSEQUAL: return "-=";
107  case MINUSMINUS: return "--";
108  case PLUSPLUS: return "++";
109  case EQUAL_EQUAL: return "==";
110  case LE: return "<=";
111  case GE: return ">=";
112  case NOTEQUAL: return "<>";
113  default: return Tok2Cmdname(t);
114  }
115 }
116 
117 int iiOpsTwoChar(const char *s)
118 {
119 /* not handling: &&, ||, ** */
120  if (s[1]=='\0') return s[0];
121  else if (s[2]!='\0') return 0;
122  switch(s[0])
123  {
124  case '.': if (s[1]=='.') return DOTDOT;
125  else return 0;
126  case ':': if (s[1]==':') return COLONCOLON;
127  else return 0;
128  case '-': if (s[1]=='-') return MINUSMINUS;
129  else return 0;
130  case '+': if (s[1]=='+') return PLUSPLUS;
131  else return 0;
132  case '=': if (s[1]=='=') return EQUAL_EQUAL;
133  else return 0;
134  case '<': if (s[1]=='=') return LE;
135  else if (s[1]=='>') return NOTEQUAL;
136  else return 0;
137  case '>': if (s[1]=='=') return GE;
138  else return 0;
139  case '!': if (s[1]=='=') return NOTEQUAL;
140  else return 0;
141  }
142  return 0;
143 }
144 
145 static void list1(const char* s, idhdl h,BOOLEAN c, BOOLEAN fullname)
146 {
147  char buffer[22];
148  int l;
149  char buf2[128];
150 
151  if(fullname) sprintf(buf2, "%s::%s", "", IDID(h));
152  else sprintf(buf2, "%s", IDID(h));
153 
154  Print("%s%-30.30s [%d] ",s,buf2,IDLEV(h));
155  if (h == currRingHdl) PrintS("*");
156  PrintS(Tok2Cmdname((int)IDTYP(h)));
157 
158  ipListFlag(h);
159  switch(IDTYP(h))
160  {
161  case ALIAS_CMD: Print(" for %s",IDID((idhdl)IDDATA(h))); break;
162  case INT_CMD: Print(" %d",IDINT(h)); break;
163  case INTVEC_CMD:Print(" (%d)",IDINTVEC(h)->length()); break;
164  case INTMAT_CMD:Print(" %d x %d",IDINTVEC(h)->rows(),IDINTVEC(h)->cols());
165  break;
166  case POLY_CMD:
167  case VECTOR_CMD:if (c)
168  {
169  PrintS(" ");wrp(IDPOLY(h));
170  if(IDPOLY(h) != NULL)
171  {
172  Print(", %d monomial(s)",pLength(IDPOLY(h)));
173  }
174  }
175  break;
176  case MODUL_CMD: Print(", rk %d", (int)(IDIDEAL(h)->rank));
177  case IDEAL_CMD: Print(", %u generator(s)",
178  IDELEMS(IDIDEAL(h))); break;
179  case MAP_CMD:
180  Print(" from %s",IDMAP(h)->preimage); break;
181  case MATRIX_CMD:Print(" %u x %u"
182  ,MATROWS(IDMATRIX(h))
183  ,MATCOLS(IDMATRIX(h))
184  );
185  break;
186  case SMATRIX_CMD:Print(" %u x %u"
187  ,(int)(IDIDEAL(h)->rank)
188  ,IDELEMS(IDIDEAL(h))
189  );
190  break;
191  case PACKAGE_CMD:
192  paPrint(IDID(h),IDPACKAGE(h));
193  break;
194  case PROC_CMD: if((IDPROC(h)->libname!=NULL)
195  && (strlen(IDPROC(h)->libname)>0))
196  Print(" from %s",IDPROC(h)->libname);
197  if(IDPROC(h)->language==LANG_C)
198  PrintS(" (C)");
199  if(IDPROC(h)->is_static)
200  PrintS(" (static)");
201  break;
202  case STRING_CMD:
203  {
204  char *s;
205  l=strlen(IDSTRING(h));
206  memset(buffer,0,22);
207  strncpy(buffer,IDSTRING(h),si_min(l,20));
208  if ((s=strchr(buffer,'\n'))!=NULL)
209  {
210  *s='\0';
211  }
212  PrintS(" ");
213  PrintS(buffer);
214  if((s!=NULL) ||(l>20))
215  {
216  Print("..., %d char(s)",l);
217  }
218  break;
219  }
220  case LIST_CMD: Print(", size: %d",IDLIST(h)->nr+1);
221  break;
222  case RING_CMD:
223  if ((IDRING(h)==currRing) && (currRingHdl!=h))
224  PrintS("(*)"); /* this is an alias to currRing */
225 #ifdef RDEBUG
227  Print(" <%lx>",(long)(IDRING(h)));
228 #endif
229  break;
230 #ifdef SINGULAR_4_2
231  case CNUMBER_CMD:
232  { number2 n=(number2)IDDATA(h);
233  Print(" (%s)",nCoeffName(n->cf));
234  break;
235  }
236  case CMATRIX_CMD:
237  { bigintmat *b=(bigintmat*)IDDATA(h);
238  Print(" %d x %d (%s)",
239  b->rows(),b->cols(),
240  nCoeffName(b->basecoeffs()));
241  break;
242  }
243 #endif
244  /*default: break;*/
245  }
246  PrintLn();
247 }
248 
249 void type_cmd(leftv v)
250 {
251  BOOLEAN oldShortOut = FALSE;
252 
253  if (currRing != NULL)
254  {
255  oldShortOut = currRing->ShortOut;
256  currRing->ShortOut = 1;
257  }
258  int t=v->Typ();
259  Print("// %s %s ",v->Name(),Tok2Cmdname(t));
260  switch (t)
261  {
262  case MAP_CMD:Print(" from %s\n",((map)(v->Data()))->preimage); break;
263  case INTMAT_CMD: Print(" %d x %d\n",((intvec*)(v->Data()))->rows(),
264  ((intvec*)(v->Data()))->cols()); break;
265  case MATRIX_CMD:Print(" %u x %u\n" ,
266  MATROWS((matrix)(v->Data())),
267  MATCOLS((matrix)(v->Data())));break;
268  case MODUL_CMD: Print(", rk %d\n", (int)(((ideal)(v->Data()))->rank));break;
269  case LIST_CMD: Print(", size %d\n",((lists)(v->Data()))->nr+1); break;
270 
271  case PROC_CMD:
272  case RING_CMD:
273  case IDEAL_CMD: PrintLn(); break;
274 
275  //case INT_CMD:
276  //case STRING_CMD:
277  //case INTVEC_CMD:
278  //case POLY_CMD:
279  //case VECTOR_CMD:
280  //case PACKAGE_CMD:
281 
282  default:
283  break;
284  }
285  v->Print();
286  if (currRing != NULL)
287  currRing->ShortOut = oldShortOut;
288 }
289 
290 static void killlocals0(int v, idhdl * localhdl, const ring r)
291 {
292  idhdl h = *localhdl;
293  while (h!=NULL)
294  {
295  int vv;
296  //Print("consider %s, lev: %d:",IDID(h),IDLEV(h));
297  if ((vv=IDLEV(h))>0)
298  {
299  if (vv < v)
300  {
301  if (iiNoKeepRing)
302  {
303  //PrintS(" break\n");
304  return;
305  }
306  h = IDNEXT(h);
307  //PrintLn();
308  }
309  else //if (vv >= v)
310  {
311  idhdl nexth = IDNEXT(h);
312  killhdl2(h,localhdl,r);
313  h = nexth;
314  //PrintS("kill\n");
315  }
316  }
317  else
318  {
319  h = IDNEXT(h);
320  //PrintLn();
321  }
322  }
323 }
324 
325 void killlocals_rec(idhdl *root,int v, ring r)
326 {
327  idhdl h=*root;
328  while (h!=NULL)
329  {
330  if (IDLEV(h)>=v)
331  {
332 // Print("kill %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
333  idhdl n=IDNEXT(h);
334  killhdl2(h,root,r);
335  h=n;
336  }
337  else if (IDTYP(h)==PACKAGE_CMD)
338  {
339  // Print("into pack %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
340  if (IDPACKAGE(h)!=basePack)
341  killlocals_rec(&(IDRING(h)->idroot),v,r);
342  h=IDNEXT(h);
343  }
344  else if (IDTYP(h)==RING_CMD)
345  {
346  if ((IDRING(h)!=NULL) && (IDRING(h)->idroot!=NULL))
347  // we have to test IDRING(h)!=NULL: qring Q=groebner(...): killlocals
348  {
349  // Print("into ring %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
350  killlocals_rec(&(IDRING(h)->idroot),v,IDRING(h));
351  }
352  h=IDNEXT(h);
353  }
354  else
355  {
356 // Print("skip %s lev %d for lev %d\n",IDID(h),IDLEV(h),v);
357  h=IDNEXT(h);
358  }
359  }
360 }
362 {
363  if (L==NULL) return FALSE;
364  BOOLEAN changed=FALSE;
365  int n=L->nr;
366  for(;n>=0;n--)
367  {
368  leftv h=&(L->m[n]);
369  void *d=h->data;
370  if ((h->rtyp==RING_CMD)
371  && (((ring)d)->idroot!=NULL))
372  {
373  if (d!=currRing) {changed=TRUE;rChangeCurrRing((ring)d);}
374  killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
375  }
376  else if (h->rtyp==LIST_CMD)
377  changed|=killlocals_list(v,(lists)d);
378  }
379  return changed;
380 }
381 void killlocals(int v)
382 {
383  BOOLEAN changed=FALSE;
384  idhdl sh=currRingHdl;
385  ring cr=currRing;
386  if (sh!=NULL) changed=((IDLEV(sh)<v) || (IDRING(sh)->ref>0));
387  //if (changed) Print("currRing=%s(%x), lev=%d,ref=%d\n",IDID(sh),IDRING(sh),IDLEV(sh),IDRING(sh)->ref);
388 
389  killlocals_rec(&(basePack->idroot),v,currRing);
390 
392  {
393  int t=iiRETURNEXPR.Typ();
394  if (/*iiRETURNEXPR.Typ()*/ t==RING_CMD)
395  {
397  if (((ring)h->data)->idroot!=NULL)
398  killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
399  }
400  else if (/*iiRETURNEXPR.Typ()*/ t==LIST_CMD)
401  {
403  changed |=killlocals_list(v,(lists)h->data);
404  }
405  }
406  if (changed)
407  {
409  if (currRingHdl==NULL)
410  currRing=NULL;
411  else if(cr!=currRing)
412  rChangeCurrRing(cr);
413  }
414 
415  if (myynest<=1) iiNoKeepRing=TRUE;
416  //Print("end killlocals >= %d\n",v);
417  //listall();
418 }
419 
420 void list_cmd(int typ, const char* what, const char *prefix,BOOLEAN iterate, BOOLEAN fullname)
421 {
422  package savePack=currPack;
423  idhdl h,start;
424  BOOLEAN all = typ<0;
425  BOOLEAN really_all=FALSE;
426 
427  if ( typ==0 )
428  {
429  if (strcmp(what,"all")==0)
430  {
431  if (currPack!=basePack)
432  list_cmd(-1,NULL,prefix,iterate,fullname); // list current package
433  really_all=TRUE;
434  h=basePack->idroot;
435  }
436  else
437  {
438  h = ggetid(what);
439  if (h!=NULL)
440  {
441  if (iterate) list1(prefix,h,TRUE,fullname);
442  if (IDTYP(h)==ALIAS_CMD) PrintS("A");
443  if ((IDTYP(h)==RING_CMD)
444  //|| (IDTYP(h)==PACKAGE_CMD)
445  )
446  {
447  h=IDRING(h)->idroot;
448  }
449  else if(IDTYP(h)==PACKAGE_CMD)
450  {
452  //Print("list_cmd:package\n");
453  all=TRUE;typ=PROC_CMD;fullname=TRUE;really_all=TRUE;
454  h=IDPACKAGE(h)->idroot;
455  }
456  else
457  {
458  currPack=savePack;
459  return;
460  }
461  }
462  else
463  {
464  Werror("%s is undefined",what);
465  currPack=savePack;
466  return;
467  }
468  }
469  all=TRUE;
470  }
471  else if (RingDependend(typ))
472  {
473  h = currRing->idroot;
474  }
475  else
476  h = IDROOT;
477  start=h;
478  while (h!=NULL)
479  {
480  if ((all
481  && (IDTYP(h)!=PROC_CMD)
482  &&(IDTYP(h)!=PACKAGE_CMD)
483  &&(IDTYP(h)!=CRING_CMD)
484  )
485  || (typ == IDTYP(h))
486  || ((IDTYP(h)==CRING_CMD) && (typ==RING_CMD))
487  )
488  {
489  list1(prefix,h,start==currRingHdl, fullname);
490  if ((IDTYP(h)==RING_CMD)
491  && (really_all || (all && (h==currRingHdl)))
492  && ((IDLEV(h)==0)||(IDLEV(h)==myynest)))
493  {
494  list_cmd(0,IDID(h),"// ",FALSE);
495  }
496  if (IDTYP(h)==PACKAGE_CMD && really_all)
497  {
498  package save_p=currPack;
500  list_cmd(0,IDID(h),"// ",FALSE);
501  currPack=save_p;
502  }
503  }
504  h = IDNEXT(h);
505  }
506  currPack=savePack;
507 }
508 
509 void test_cmd(int i)
510 {
511  int ii;
512 
513  if (i<0)
514  {
515  ii= -i;
516  if (ii < 32)
517  {
518  si_opt_1 &= ~Sy_bit(ii);
519  }
520  else if (ii < 64)
521  {
522  si_opt_2 &= ~Sy_bit(ii-32);
523  }
524  else
525  WerrorS("out of bounds\n");
526  }
527  else if (i<32)
528  {
529  ii=i;
530  if (Sy_bit(ii) & kOptions)
531  {
532  WarnS("Gerhard, use the option command");
533  si_opt_1 |= Sy_bit(ii);
534  }
535  else if (Sy_bit(ii) & validOpts)
536  si_opt_1 |= Sy_bit(ii);
537  }
538  else if (i<64)
539  {
540  ii=i-32;
541  si_opt_2 |= Sy_bit(ii);
542  }
543  else
544  WerrorS("out of bounds\n");
545 }
546 
548 {
549  int rc = 0;
550  while (v!=NULL)
551  {
552  switch (v->Typ())
553  {
554  case INT_CMD:
555  case POLY_CMD:
556  case VECTOR_CMD:
557  case NUMBER_CMD:
558  rc++;
559  break;
560  case INTVEC_CMD:
561  case INTMAT_CMD:
562  rc += ((intvec *)(v->Data()))->length();
563  break;
564  case MATRIX_CMD:
565  case IDEAL_CMD:
566  case MODUL_CMD:
567  {
568  matrix mm = (matrix)(v->Data());
569  rc += mm->rows() * mm->cols();
570  }
571  break;
572  case LIST_CMD:
573  rc+=((lists)v->Data())->nr+1;
574  break;
575  default:
576  rc++;
577  }
578  v = v->next;
579  }
580  return rc;
581 }
582 
584 {
585  sleftv vf;
586  if (iiConvert(v->Typ(),LINK_CMD,iiTestConvert(v->Typ(),LINK_CMD),v,&vf))
587  {
588  WerrorS("link expected");
589  return TRUE;
590  }
591  si_link l=(si_link)vf.Data();
592  if (vf.next == NULL)
593  {
594  WerrorS("write: need at least two arguments");
595  return TRUE;
596  }
597 
598  BOOLEAN b=slWrite(l,vf.next); /* iiConvert preserves next */
599  if (b)
600  {
601  const char *s;
602  if ((l!=NULL)&&(l->name!=NULL)) s=l->name;
603  else s=sNoName_fe;
604  Werror("cannot write to %s",s);
605  }
606  vf.CleanUp();
607  return b;
608 }
609 
610 leftv iiMap(map theMap, const char * what)
611 {
612  idhdl w,r;
613  leftv v;
614  int i;
615  nMapFunc nMap;
616 
617  r=IDROOT->get(theMap->preimage,myynest);
618  if ((currPack!=basePack)
619  &&((r==NULL) || ((r->typ != RING_CMD) )))
620  r=basePack->idroot->get(theMap->preimage,myynest);
621  if ((r==NULL) && (currRingHdl!=NULL)
622  && (strcmp(theMap->preimage,IDID(currRingHdl))==0))
623  {
624  r=currRingHdl;
625  }
626  if ((r!=NULL) && (r->typ == RING_CMD))
627  {
628  ring src_ring=IDRING(r);
629  if ((nMap=n_SetMap(src_ring->cf, currRing->cf))==NULL)
630  {
631  Werror("can not map from ground field of %s to current ground field",
632  theMap->preimage);
633  return NULL;
634  }
635  if (IDELEMS(theMap)<src_ring->N)
636  {
637  theMap->m=(polyset)omReallocSize((ADDRESS)theMap->m,
638  IDELEMS(theMap)*sizeof(poly),
639  (src_ring->N)*sizeof(poly));
640  for(i=IDELEMS(theMap);i<src_ring->N;i++)
641  theMap->m[i]=NULL;
642  IDELEMS(theMap)=src_ring->N;
643  }
644  if (what==NULL)
645  {
646  WerrorS("argument of a map must have a name");
647  }
648  else if ((w=src_ring->idroot->get(what,myynest))!=NULL)
649  {
650  char *save_r=NULL;
652  sleftv tmpW;
653  memset(&tmpW,0,sizeof(sleftv));
654  tmpW.rtyp=IDTYP(w);
655  if (tmpW.rtyp==MAP_CMD)
656  {
657  tmpW.rtyp=IDEAL_CMD;
658  save_r=IDMAP(w)->preimage;
659  IDMAP(w)->preimage=0;
660  }
661  tmpW.data=IDDATA(w);
662  // check overflow
663  BOOLEAN overflow=FALSE;
664  if ((tmpW.rtyp==IDEAL_CMD)
665  || (tmpW.rtyp==MODUL_CMD)
666  || (tmpW.rtyp==MAP_CMD))
667  {
668  ideal id=(ideal)tmpW.data;
669  long *degs=(long*)omAlloc(IDELEMS(id)*sizeof(long));
670  for(int i=IDELEMS(id)-1;i>=0;i--)
671  {
672  poly p=id->m[i];
673  if (p!=NULL) degs[i]=p_Totaldegree(p,src_ring);
674  else degs[i]=0;
675  }
676  for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
677  {
678  if (theMap->m[j]!=NULL)
679  {
680  long deg_monexp=pTotaldegree(theMap->m[j]);
681 
682  for(int i=IDELEMS(id)-1;i>=0;i--)
683  {
684  poly p=id->m[i];
685  if ((p!=NULL) && (degs[i]!=0) &&
686  ((unsigned long)deg_monexp > (currRing->bitmask / ((unsigned long)degs[i])/2)))
687  {
688  overflow=TRUE;
689  break;
690  }
691  }
692  }
693  }
694  omFreeSize(degs,IDELEMS(id)*sizeof(long));
695  }
696  else if (tmpW.rtyp==POLY_CMD)
697  {
698  for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
699  {
700  if (theMap->m[j]!=NULL)
701  {
702  long deg_monexp=pTotaldegree(theMap->m[j]);
703  poly p=(poly)tmpW.data;
704  long deg=0;
705  if ((p!=NULL) && ((deg=p_Totaldegree(p,src_ring))!=0) &&
706  ((unsigned long)deg_monexp > (currRing->bitmask / ((unsigned long)deg)/2)))
707  {
708  overflow=TRUE;
709  break;
710  }
711  }
712  }
713  }
714  if (overflow)
715  Warn("possible OVERFLOW in map, max exponent is %ld",currRing->bitmask/2);
716 #if 0
717  if (((tmpW.rtyp==IDEAL_CMD)||(tmpW.rtyp==MODUL_CMD)) && idIs0(IDIDEAL(w)))
718  {
719  v->rtyp=tmpW.rtyp;
720  v->data=idInit(IDELEMS(IDIDEAL(w)),IDIDEAL(w)->rank);
721  }
722  else
723 #endif
724  {
725  if ((tmpW.rtyp==IDEAL_CMD)
726  ||(tmpW.rtyp==MODUL_CMD)
727  ||(tmpW.rtyp==MATRIX_CMD)
728  ||(tmpW.rtyp==MAP_CMD))
729  {
730  v->rtyp=tmpW.rtyp;
731  char *tmp = theMap->preimage;
732  theMap->preimage=(char*)1L;
733  // map gets 1 as its rank (as an ideal)
734  v->data=maMapIdeal(IDIDEAL(w), src_ring, (ideal)theMap, currRing,nMap);
735  theMap->preimage=tmp; // map gets its preimage back
736  }
737  if (v->data==NULL) /*i.e. not IDEAL_CMD/MODUL_CMD/MATRIX_CMD/MAP */
738  {
739  if (maApplyFetch(MAP_CMD,theMap,v,&tmpW,src_ring,NULL,NULL,0,nMap))
740  {
741  Werror("cannot map %s(%d)",Tok2Cmdname(w->typ),w->typ);
743  if (save_r!=NULL) IDMAP(w)->preimage=save_r;
744  return NULL;
745  }
746  }
747  }
748  if (save_r!=NULL)
749  {
750  IDMAP(w)->preimage=save_r;
751  IDMAP((idhdl)v)->preimage=omStrDup(save_r);
752  v->rtyp=MAP_CMD;
753  }
754  return v;
755  }
756  else
757  {
758  Werror("%s undefined in %s",what,theMap->preimage);
759  }
760  }
761  else
762  {
763  Werror("cannot find preimage %s",theMap->preimage);
764  }
765  return NULL;
766 }
767 
768 #ifdef OLD_RES
769 void iiMakeResolv(resolvente r, int length, int rlen, char * name, int typ0,
770  intvec ** weights)
771 {
772  lists L=liMakeResolv(r,length,rlen,typ0,weights);
773  int i=0;
774  idhdl h;
775  char * s=(char *)omAlloc(strlen(name)+5);
776 
777  while (i<=L->nr)
778  {
779  sprintf(s,"%s(%d)",name,i+1);
780  if (i==0)
781  h=enterid(s,myynest,typ0,&(currRing->idroot), FALSE);
782  else
783  h=enterid(s,myynest,MODUL_CMD,&(currRing->idroot), FALSE);
784  if (h!=NULL)
785  {
786  h->data.uideal=(ideal)L->m[i].data;
787  h->attribute=L->m[i].attribute;
789  Print("//defining: %s as %d-th syzygy module\n",s,i+1);
790  }
791  else
792  {
793  idDelete((ideal *)&(L->m[i].data));
794  Warn("cannot define %s",s);
795  }
796  //L->m[i].data=NULL;
797  //L->m[i].rtyp=0;
798  //L->m[i].attribute=NULL;
799  i++;
800  }
801  omFreeSize((ADDRESS)L->m,(L->nr+1)*sizeof(sleftv));
803  omFreeSize((ADDRESS)s,strlen(name)+5);
804 }
805 #endif
806 
807 //resolvente iiFindRes(char * name, int * len, int *typ0)
808 //{
809 // char *s=(char *)omAlloc(strlen(name)+5);
810 // int i=-1;
811 // resolvente r;
812 // idhdl h;
813 //
814 // do
815 // {
816 // i++;
817 // sprintf(s,"%s(%d)",name,i+1);
818 // h=currRing->idroot->get(s,myynest);
819 // } while (h!=NULL);
820 // *len=i-1;
821 // if (*len<=0)
822 // {
823 // Werror("no objects %s(1),.. found",name);
824 // omFreeSize((ADDRESS)s,strlen(name)+5);
825 // return NULL;
826 // }
827 // r=(ideal *)omAlloc(/*(len+1)*/ i*sizeof(ideal));
828 // memset(r,0,(*len)*sizeof(ideal));
829 // i=-1;
830 // *typ0=MODUL_CMD;
831 // while (i<(*len))
832 // {
833 // i++;
834 // sprintf(s,"%s(%d)",name,i+1);
835 // h=currRing->idroot->get(s,myynest);
836 // if (h->typ != MODUL_CMD)
837 // {
838 // if ((i!=0) || (h->typ!=IDEAL_CMD))
839 // {
840 // Werror("%s is not of type module",s);
841 // omFreeSize((ADDRESS)r,(*len)*sizeof(ideal));
842 // omFreeSize((ADDRESS)s,strlen(name)+5);
843 // return NULL;
844 // }
845 // *typ0=IDEAL_CMD;
846 // }
847 // if ((i>0) && (idIs0(r[i-1])))
848 // {
849 // *len=i-1;
850 // break;
851 // }
852 // r[i]=IDIDEAL(h);
853 // }
854 // omFreeSize((ADDRESS)s,strlen(name)+5);
855 // return r;
856 //}
857 
858 static resolvente iiCopyRes(resolvente r, int l)
859 {
860  int i;
861  resolvente res=(ideal *)omAlloc0((l+1)*sizeof(ideal));
862 
863  for (i=0; i<l; i++)
864  if (r[i]!=NULL) res[i]=idCopy(r[i]);
865  return res;
866 }
867 
869 {
870  int len=0;
871  int typ0;
872  lists L=(lists)v->Data();
873  intvec *weights=(intvec*)atGet(v,"isHomog",INTVEC_CMD);
874  int add_row_shift = 0;
875  if (weights==NULL)
876  weights=(intvec*)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
877  if (weights!=NULL) add_row_shift=weights->min_in();
878  resolvente rr=liFindRes(L,&len,&typ0);
879  if (rr==NULL) return TRUE;
880  resolvente r=iiCopyRes(rr,len);
881 
882  syMinimizeResolvente(r,len,0);
883  omFreeSize((ADDRESS)rr,len*sizeof(ideal));
884  len++;
885  res->data=(char *)liMakeResolv(r,len,-1,typ0,NULL,add_row_shift);
886  return FALSE;
887 }
888 
890 {
891  sleftv tmp;
892  memset(&tmp,0,sizeof(tmp));
893  tmp.rtyp=INT_CMD;
894  tmp.data=(void *)1;
895  if ((u->Typ()==IDEAL_CMD)
896  || (u->Typ()==MODUL_CMD))
897  return jjBETTI2_ID(res,u,&tmp);
898  else
899  return jjBETTI2(res,u,&tmp);
900 }
901 
903 {
905  l->Init(1);
906  l->m[0].rtyp=u->Typ();
907  l->m[0].data=u->Data();
908  attr *a=u->Attribute();
909  if (a!=NULL)
910  l->m[0].attribute=*a;
911  sleftv tmp2;
912  memset(&tmp2,0,sizeof(tmp2));
913  tmp2.rtyp=LIST_CMD;
914  tmp2.data=(void *)l;
915  BOOLEAN r=jjBETTI2(res,&tmp2,v);
916  l->m[0].data=NULL;
917  l->m[0].attribute=NULL;
918  l->m[0].rtyp=DEF_CMD;
919  l->Clean();
920  return r;
921 }
922 
924 {
925  resolvente r;
926  int len;
927  int reg,typ0;
928  lists l=(lists)u->Data();
929 
930  intvec *weights=NULL;
931  int add_row_shift=0;
932  intvec *ww=NULL;
933  if (l->nr>=0) ww=(intvec *)atGet(&(l->m[0]),"isHomog",INTVEC_CMD);
934  if (ww!=NULL)
935  {
936  weights=ivCopy(ww);
937  add_row_shift = ww->min_in();
938  (*weights) -= add_row_shift;
939  }
940  //Print("attr:%x\n",weights);
941 
942  r=liFindRes(l,&len,&typ0);
943  if (r==NULL) return TRUE;
944  intvec* res_im=syBetti(r,len,&reg,weights,(int)(long)v->Data());
945  res->data=(void*)res_im;
946  omFreeSize((ADDRESS)r,(len)*sizeof(ideal));
947  //Print("rowShift: %d ",add_row_shift);
948  for(int i=1;i<=res_im->rows();i++)
949  {
950  if (IMATELEM(*res_im,1,i)==0) { add_row_shift--; }
951  else break;
952  }
953  //Print(" %d\n",add_row_shift);
954  atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
955  if (weights!=NULL) delete weights;
956  return FALSE;
957 }
958 
959 int iiRegularity(lists L)
960 {
961  int len,reg,typ0;
962 
963  resolvente r=liFindRes(L,&len,&typ0);
964 
965  if (r==NULL)
966  return -2;
967  intvec *weights=NULL;
968  int add_row_shift=0;
969  intvec *ww=(intvec *)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
970  if (ww!=NULL)
971  {
972  weights=ivCopy(ww);
973  add_row_shift = ww->min_in();
974  (*weights) -= add_row_shift;
975  }
976  //Print("attr:%x\n",weights);
977 
978  intvec *dummy=syBetti(r,len,&reg,weights);
979  if (weights!=NULL) delete weights;
980  delete dummy;
981  omFreeSize((ADDRESS)r,len*sizeof(ideal));
982  return reg+1+add_row_shift;
983 }
984 
986 #define BREAK_LINE_LENGTH 80
987 void iiDebug()
988 {
989 #ifdef HAVE_SDB
990  sdb_flags=1;
991 #endif
992  Print("\n-- break point in %s --\n",VoiceName());
994  char * s;
996  s = (char *)omAlloc(BREAK_LINE_LENGTH+4);
997  loop
998  {
999  memset(s,0,80);
1001  if (s[BREAK_LINE_LENGTH-1]!='\0')
1002  {
1003  Print("line too long, max is %d chars\n",BREAK_LINE_LENGTH);
1004  }
1005  else
1006  break;
1007  }
1008  if (*s=='\n')
1009  {
1011  }
1012 #if MDEBUG
1013  else if(strncmp(s,"cont;",5)==0)
1014  {
1016  }
1017 #endif /* MDEBUG */
1018  else
1019  {
1020  strcat( s, "\n;~\n");
1022  }
1023 }
1025 lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
1026 {
1027  int i;
1028  indset save;
1030 
1031  hexist = hInit(S, Q, &hNexist, currRing);
1032  if (hNexist == 0)
1033  {
1034  intvec *iv=new intvec(rVar(currRing));
1035  for(i=0; i<rVar(currRing); i++) (*iv)[i]=1;
1036  res->Init(1);
1037  res->m[0].rtyp=INTVEC_CMD;
1038  res->m[0].data=(intvec*)iv;
1039  return res;
1040  }
1041  else if (hisModule!=0)
1042  {
1043  res->Init(0);
1044  return res;
1045  }
1046  save = ISet = (indset)omAlloc0Bin(indlist_bin);
1047  hMu = 0;
1048  hwork = (scfmon)omAlloc(hNexist * sizeof(scmon));
1049  hvar = (varset)omAlloc((rVar(currRing) + 1) * sizeof(int));
1050  hpure = (scmon)omAlloc((1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1051  hrad = hexist;
1052  hNrad = hNexist;
1053  radmem = hCreate(rVar(currRing) - 1);
1054  hCo = rVar(currRing) + 1;
1055  hNvar = rVar(currRing);
1056  hRadical(hrad, &hNrad, hNvar);
1057  hSupp(hrad, hNrad, hvar, &hNvar);
1058  if (hNvar)
1059  {
1060  hCo = hNvar;
1061  memset(hpure, 0, (rVar(currRing) + 1) * sizeof(long));
1062  hPure(hrad, 0, &hNrad, hvar, hNvar, hpure, &hNpure);
1063  hLexR(hrad, hNrad, hvar, hNvar);
1065  }
1066  if (hCo && (hCo < rVar(currRing)))
1067  {
1069  }
1070  if (hMu!=0)
1071  {
1072  ISet = save;
1073  hMu2 = 0;
1074  if (all && (hCo+1 < rVar(currRing)))
1075  {
1078  i=hMu+hMu2;
1079  res->Init(i);
1080  if (hMu2 == 0)
1081  {
1083  }
1084  }
1085  else
1086  {
1087  res->Init(hMu);
1088  }
1089  for (i=0;i<hMu;i++)
1090  {
1091  res->m[i].data = (void *)save->set;
1092  res->m[i].rtyp = INTVEC_CMD;
1093  ISet = save;
1094  save = save->nx;
1096  }
1097  omFreeBin((ADDRESS)save, indlist_bin);
1098  if (hMu2 != 0)
1099  {
1100  save = JSet;
1101  for (i=hMu;i<hMu+hMu2;i++)
1102  {
1103  res->m[i].data = (void *)save->set;
1104  res->m[i].rtyp = INTVEC_CMD;
1105  JSet = save;
1106  save = save->nx;
1108  }
1109  omFreeBin((ADDRESS)save, indlist_bin);
1110  }
1111  }
1112  else
1113  {
1114  res->Init(0);
1116  }
1117  hKill(radmem, rVar(currRing) - 1);
1118  omFreeSize((ADDRESS)hpure, (1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1119  omFreeSize((ADDRESS)hvar, (rVar(currRing) + 1) * sizeof(int));
1120  omFreeSize((ADDRESS)hwork, hNexist * sizeof(scmon));
1122  return res;
1123 }
1125 int iiDeclCommand(leftv sy, leftv name, int lev,int t, idhdl* root,BOOLEAN isring, BOOLEAN init_b)
1126 {
1127  BOOLEAN res=FALSE;
1128  const char *id = name->name;
1129 
1130  memset(sy,0,sizeof(sleftv));
1131  if ((name->name==NULL)||(isdigit(name->name[0])))
1132  {
1133  WerrorS("object to declare is not a name");
1134  res=TRUE;
1135  }
1136  else
1137  {
1138  if (t==QRING_CMD) t=RING_CMD; // qring is always RING_CMD
1139 
1140  if (TEST_V_ALLWARN
1141  && (name->rtyp!=0)
1142  && (name->rtyp!=IDHDL)
1143  && (currRingHdl!=NULL) && (IDLEV(currRingHdl)==myynest))
1144  {
1145  Warn("`%s` is %s in %s:%d:%s",name->name,Tok2Cmdname(name->rtyp),
1147  }
1148  {
1149  sy->data = (char *)enterid(id,lev,t,root,init_b);
1150  }
1151  if (sy->data!=NULL)
1152  {
1153  sy->rtyp=IDHDL;
1154  currid=sy->name=IDID((idhdl)sy->data);
1155  // name->name=NULL; /* used in enterid */
1156  //sy->e = NULL;
1157  if (name->next!=NULL)
1158  {
1160  res=iiDeclCommand(sy->next,name->next,lev,t,root, isring);
1161  }
1162  }
1163  else res=TRUE;
1164  }
1165  name->CleanUp();
1166  return res;
1167 }
1170 {
1171  attr at=NULL;
1172  if (iiCurrProc!=NULL)
1173  at=iiCurrProc->attribute->get("default_arg");
1174  if (at==NULL)
1175  return FALSE;
1176  sleftv tmp;
1177  memset(&tmp,0,sizeof(sleftv));
1178  tmp.rtyp=at->atyp;
1179  tmp.data=at->CopyA();
1180  return iiAssign(p,&tmp);
1183 {
1184  // must be inside a proc, as we simultae an proc_end at the end
1185  if (myynest==0)
1186  {
1187  WerrorS("branchTo can only occur in a proc");
1188  return TRUE;
1189  }
1190  // <string1...stringN>,<proc>
1191  // known: args!=NULL, l>=1
1192  int l=args->listLength();
1193  int ll=0;
1194  if (iiCurrArgs!=NULL) ll=iiCurrArgs->listLength();
1195  if (ll!=(l-1)) return FALSE;
1196  leftv h=args;
1197  // set up the table for type test:
1198  short *t=(short*)omAlloc(l*sizeof(short));
1199  t[0]=l-1;
1200  int b;
1201  int i;
1202  for(i=1;i<l;i++,h=h->next)
1203  {
1204  if (h->Typ()!=STRING_CMD)
1205  {
1206  omFree(t);
1207  Werror("arg %d is not a string",i);
1208  return TRUE;
1209  }
1210  int tt;
1211  b=IsCmd((char *)h->Data(),tt);
1212  if(b) t[i]=tt;
1213  else
1214  {
1215  omFree(t);
1216  Werror("arg %d is not a type name",i);
1217  return TRUE;
1218  }
1219  }
1220  if (h->Typ()!=PROC_CMD)
1221  {
1222  omFree(t);
1223  Werror("last(%d.) arg.(%s) is not a proc(but %s(%d)), nesting=%d",
1224  i,h->name,Tok2Cmdname(h->Typ()),h->Typ(),myynest);
1225  return TRUE;
1226  }
1227  b=iiCheckTypes(iiCurrArgs,t,0);
1228  omFree(t);
1229  if (b && (h->rtyp==IDHDL) && (h->e==NULL))
1230  {
1231  // get the proc:
1232  iiCurrProc=(idhdl)h->data;
1234  // already loaded ?
1235  if( pi->data.s.body==NULL )
1236  {
1238  if (pi->data.s.body==NULL) return TRUE;
1239  }
1240  // set currPackHdl/currPack
1241  if ((pi->pack!=NULL)&&(currPack!=pi->pack))
1242  {
1243  currPack=pi->pack;
1246  //Print("set pack=%s\n",IDID(currPackHdl));
1247  }
1248  // see iiAllStart:
1249  BITSET save1=si_opt_1;
1250  BITSET save2=si_opt_2;
1251  newBuffer( omStrDup(pi->data.s.body), BT_proc,
1252  pi, pi->data.s.body_lineno-(iiCurrArgs==NULL) );
1253  BOOLEAN err=yyparse();
1254  si_opt_1=save1;
1255  si_opt_2=save2;
1256  // now save the return-expr.
1258  memcpy(&sLastPrinted,&iiRETURNEXPR,sizeof(sleftv));
1259  iiRETURNEXPR.Init();
1260  // warning about args.:
1261  if (iiCurrArgs!=NULL)
1262  {
1263  if (err==0) Warn("too many arguments for %s",IDID(iiCurrProc));
1264  iiCurrArgs->CleanUp();
1266  iiCurrArgs=NULL;
1267  }
1268  // similate proc_end:
1269  // - leave input
1270  void myychangebuffer();
1271  myychangebuffer();
1272  // - set the current buffer to its end (this is a pointer in a buffer,
1273  // not a file ptr) "branchTo" is only valid in proc)
1275  // - kill local vars
1277  // - return
1278  newBuffer(omStrDup("\n;return(_);\n"),BT_execute);
1279  return (err!=0);
1280  }
1281  return FALSE;
1284 {
1285  if (iiCurrArgs==NULL)
1286  {
1287  if (strcmp(p->name,"#")==0)
1288  return iiDefaultParameter(p);
1289  Werror("not enough arguments for proc %s",VoiceName());
1290  p->CleanUp();
1291  return TRUE;
1292  }
1293  leftv h=iiCurrArgs;
1294  leftv rest=h->next; /*iiCurrArgs is not NULL here*/
1295  BOOLEAN is_default_list=FALSE;
1296  if (strcmp(p->name,"#")==0)
1297  {
1298  is_default_list=TRUE;
1299  rest=NULL;
1300  }
1301  else
1302  {
1303  h->next=NULL;
1304  }
1305  BOOLEAN res=iiAssign(p,h);
1306  if (is_default_list)
1307  {
1308  iiCurrArgs=NULL;
1309  }
1310  else
1311  {
1312  iiCurrArgs=rest;
1313  }
1314  h->CleanUp();
1316  return res;
1317 }
1319 static BOOLEAN iiInternalExport (leftv v, int toLev)
1320 {
1321  idhdl h=(idhdl)v->data;
1322  //Print("iiInternalExport('%s',%d)%s\n", v->name, toLev,"");
1323  if (IDLEV(h)==0)
1324  {
1325  if (BVERBOSE(V_REDEFINE)) Warn("`%s` is already global",IDID(h));
1326  }
1327  else
1328  {
1329  h=IDROOT->get(v->name,toLev);
1330  idhdl *root=&IDROOT;
1331  if ((h==NULL)&&(currRing!=NULL))
1332  {
1333  h=currRing->idroot->get(v->name,toLev);
1334  root=&currRing->idroot;
1335  }
1336  BOOLEAN keepring=FALSE;
1337  if ((h!=NULL)&&(IDLEV(h)==toLev))
1338  {
1339  if (IDTYP(h)==v->Typ())
1340  {
1341  if ((IDTYP(h)==RING_CMD)
1342  && (v->Data()==IDDATA(h)))
1343  {
1344  IDRING(h)->ref++;
1345  keepring=TRUE;
1346  IDLEV(h)=toLev;
1347  //WarnS("keepring");
1348  return FALSE;
1349  }
1350  if (BVERBOSE(V_REDEFINE))
1351  {
1352  Warn("redefining %s (%s)",IDID(h),my_yylinebuf);
1353  }
1354  if (iiLocalRing[0]==IDRING(h) && (!keepring)) iiLocalRing[0]=NULL;
1355  killhdl2(h,root,currRing);
1356  }
1357  else
1358  {
1359  return TRUE;
1360  }
1361  }
1362  h=(idhdl)v->data;
1363  IDLEV(h)=toLev;
1364  if (keepring) IDRING(h)->ref--;
1366  //Print("export %s\n",IDID(h));
1367  }
1368  return FALSE;
1369 }
1371 BOOLEAN iiInternalExport (leftv v, int toLev, package rootpack)
1372 {
1373  idhdl h=(idhdl)v->data;
1374  if(h==NULL)
1375  {
1376  Warn("'%s': no such identifier\n", v->name);
1377  return FALSE;
1378  }
1379  package frompack=v->req_packhdl;
1380  if (frompack==NULL) frompack=currPack;
1381  if ((RingDependend(IDTYP(h)))
1382  || ((IDTYP(h)==LIST_CMD)
1383  && (lRingDependend(IDLIST(h)))
1384  )
1385  )
1386  {
1387  //Print("// ==> Ringdependent set nesting to 0\n");
1388  return (iiInternalExport(v, toLev));
1389  }
1390  else
1391  {
1392  IDLEV(h)=toLev;
1393  v->req_packhdl=rootpack;
1394  if (h==frompack->idroot)
1395  {
1396  frompack->idroot=h->next;
1397  }
1398  else
1399  {
1400  idhdl hh=frompack->idroot;
1401  while ((hh!=NULL) && (hh->next!=h))
1402  hh=hh->next;
1403  if ((hh!=NULL) && (hh->next==h))
1404  hh->next=h->next;
1405  else
1406  {
1407  Werror("`%s` not found",v->Name());
1408  return TRUE;
1409  }
1410  }
1411  h->next=rootpack->idroot;
1412  rootpack->idroot=h;
1413  }
1414  return FALSE;
1415 }
1417 BOOLEAN iiExport (leftv v, int toLev)
1418 {
1419  BOOLEAN nok=FALSE;
1420  leftv r=v;
1421  while (v!=NULL)
1422  {
1423  if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL))
1424  {
1425  Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1426  nok=TRUE;
1427  }
1428  else
1429  {
1430  if(iiInternalExport(v, toLev))
1431  {
1432  r->CleanUp();
1433  return TRUE;
1434  }
1435  }
1436  v=v->next;
1437  }
1438  r->CleanUp();
1439  return nok;
1440 }
1441 
1442 /*assume root!=idroot*/
1443 BOOLEAN iiExport (leftv v, int toLev, package pack)
1444 {
1445 // if ((pack==basePack)&&(pack!=currPack))
1446 // { Warn("'exportto' to Top is depreciated in >>%s<<",my_yylinebuf);}
1447  BOOLEAN nok=FALSE;
1448  leftv rv=v;
1449  while (v!=NULL)
1450  {
1451  if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL)
1452  )
1453  {
1454  Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1455  nok=TRUE;
1456  }
1457  else
1458  {
1459  idhdl old=pack->idroot->get( v->name,toLev);
1460  if (old!=NULL)
1461  {
1462  if ((pack==currPack) && (old==(idhdl)v->data))
1463  {
1464  if (BVERBOSE(V_REDEFINE)) Warn("`%s` is already global",IDID(old));
1465  break;
1466  }
1467  else if (IDTYP(old)==v->Typ())
1468  {
1469  if (BVERBOSE(V_REDEFINE))
1470  {
1471  Warn("redefining %s (%s)",IDID(old),my_yylinebuf);
1472  }
1473  v->name=omStrDup(v->name);
1474  killhdl2(old,&(pack->idroot),currRing);
1475  }
1476  else
1477  {
1478  rv->CleanUp();
1479  return TRUE;
1480  }
1481  }
1482  //Print("iiExport: pack=%s\n",IDID(root));
1483  if(iiInternalExport(v, toLev, pack))
1484  {
1485  rv->CleanUp();
1486  return TRUE;
1487  }
1488  }
1489  v=v->next;
1490  }
1491  rv->CleanUp();
1492  return nok;
1493 }
1495 BOOLEAN iiCheckRing(int i)
1496 {
1497  if (currRing==NULL)
1498  {
1499  #ifdef SIQ
1500  if (siq<=0)
1501  {
1502  #endif
1503  if (RingDependend(i))
1504  {
1505  WerrorS("no ring active");
1506  return TRUE;
1507  }
1508  #ifdef SIQ
1509  }
1510  #endif
1511  }
1512  return FALSE;
1513 }
1515 poly iiHighCorner(ideal I, int ak)
1516 {
1517  int i;
1518  if(!idIsZeroDim(I)) return NULL; // not zero-dim.
1519  poly po=NULL;
1521  {
1522  scComputeHC(I,currRing->qideal,ak,po);
1523  if (po!=NULL)
1524  {
1525  pGetCoeff(po)=nInit(1);
1526  for (i=rVar(currRing); i>0; i--)
1527  {
1528  if (pGetExp(po, i) > 0) pDecrExp(po,i);
1529  }
1530  pSetComp(po,ak);
1531  pSetm(po);
1532  }
1533  }
1534  else
1535  po=pOne();
1536  return po;
1537 }
1539 void iiCheckPack(package &p)
1540 {
1541  if (p!=basePack)
1542  {
1543  idhdl t=basePack->idroot;
1544  while ((t!=NULL) && (IDTYP(t)!=PACKAGE_CMD) && (IDPACKAGE(t)!=p)) t=t->next;
1545  if (t==NULL)
1546  {
1547  WarnS("package not found\n");
1548  p=basePack;
1549  }
1550  }
1551 }
1553 idhdl rDefault(const char *s)
1554 {
1555  idhdl tmp=NULL;
1556 
1557  if (s!=NULL) tmp = enterid(s, myynest, RING_CMD, &IDROOT);
1558  if (tmp==NULL) return NULL;
1559 
1560 // if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
1562  {
1564  memset(&sLastPrinted,0,sizeof(sleftv));
1565  }
1566 
1567  ring r = IDRING(tmp) = (ring) omAlloc0Bin(sip_sring_bin);
1568 
1569  #ifndef TEST_ZN_AS_ZP
1570  r->cf = nInitChar(n_Zp, (void*)32003); // r->cf->ch = 32003;
1571  #else
1572  mpz_t modBase;
1573  mpz_init_set_ui(modBase, (long)32003);
1574  ZnmInfo info;
1575  info.base= modBase;
1576  info.exp= 1;
1577  r->cf=nInitChar(n_Zn,(void*) &info);
1578  r->cf->is_field=1;
1579  r->cf->is_domain=1;
1580  r->cf->has_simple_Inverse=1;
1581  #endif
1582  r->N = 3;
1583  /*r->P = 0; Alloc0 in idhdl::set, ipid.cc*/
1584  /*names*/
1585  r->names = (char **) omAlloc0(3 * sizeof(char_ptr));
1586  r->names[0] = omStrDup("x");
1587  r->names[1] = omStrDup("y");
1588  r->names[2] = omStrDup("z");
1589  /*weights: entries for 3 blocks: NULL*/
1590  r->wvhdl = (int **)omAlloc0(3 * sizeof(int_ptr));
1591  /*order: dp,C,0*/
1592  r->order = (rRingOrder_t *) omAlloc(3 * sizeof(rRingOrder_t *));
1593  r->block0 = (int *)omAlloc0(3 * sizeof(int *));
1594  r->block1 = (int *)omAlloc0(3 * sizeof(int *));
1595  /* ringorder dp for the first block: var 1..3 */
1596  r->order[0] = ringorder_dp;
1597  r->block0[0] = 1;
1598  r->block1[0] = 3;
1599  /* ringorder C for the second block: no vars */
1600  r->order[1] = ringorder_C;
1601  /* the last block: everything is 0 */
1602  r->order[2] = (rRingOrder_t)0;
1603 
1604  /* complete ring intializations */
1605  rComplete(r);
1606  rSetHdl(tmp);
1607  return currRingHdl;
1608 }
1610 idhdl rFindHdl(ring r, idhdl n)
1611 {
1613  if (h!=NULL) return h;
1614  if (IDROOT!=basePack->idroot) h=rSimpleFindHdl(r,basePack->idroot,n);
1615  if (h!=NULL) return h;
1617  while(p!=NULL)
1618  {
1619  if ((p->cPack!=basePack)
1620  && (p->cPack!=currPack))
1621  h=rSimpleFindHdl(r,p->cPack->idroot,n);
1622  if (h!=NULL) return h;
1623  p=p->next;
1624  }
1625  idhdl tmp=basePack->idroot;
1626  while (tmp!=NULL)
1627  {
1628  if (IDTYP(tmp)==PACKAGE_CMD)
1629  h=rSimpleFindHdl(r,IDPACKAGE(tmp)->idroot,n);
1630  if (h!=NULL) return h;
1631  tmp=IDNEXT(tmp);
1632  }
1633  return NULL;
1634 }
1636 void rDecomposeCF(leftv h,const ring r,const ring R)
1637 {
1639  L->Init(4);
1640  h->rtyp=LIST_CMD;
1641  h->data=(void *)L;
1642  // 0: char/ cf - ring
1643  // 1: list (var)
1644  // 2: list (ord)
1645  // 3: qideal
1646  // ----------------------------------------
1647  // 0: char/ cf - ring
1648  L->m[0].rtyp=INT_CMD;
1649  L->m[0].data=(void *)(long)r->cf->ch;
1650  // ----------------------------------------
1651  // 1: list (var)
1653  LL->Init(r->N);
1654  int i;
1655  for(i=0; i<r->N; i++)
1656  {
1657  LL->m[i].rtyp=STRING_CMD;
1658  LL->m[i].data=(void *)omStrDup(r->names[i]);
1659  }
1660  L->m[1].rtyp=LIST_CMD;
1661  L->m[1].data=(void *)LL;
1662  // ----------------------------------------
1663  // 2: list (ord)
1665  i=rBlocks(r)-1;
1666  LL->Init(i);
1667  i--;
1668  lists LLL;
1669  for(; i>=0; i--)
1670  {
1671  intvec *iv;
1672  int j;
1673  LL->m[i].rtyp=LIST_CMD;
1675  LLL->Init(2);
1676  LLL->m[0].rtyp=STRING_CMD;
1677  LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
1678  if (r->block1[i]-r->block0[i] >=0 )
1679  {
1680  j=r->block1[i]-r->block0[i];
1681  if(r->order[i]==ringorder_M) j=(j+1)*(j+1)-1;
1682  iv=new intvec(j+1);
1683  if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
1684  {
1685  for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j];
1686  }
1687  else switch (r->order[i])
1688  {
1689  case ringorder_dp:
1690  case ringorder_Dp:
1691  case ringorder_ds:
1692  case ringorder_Ds:
1693  case ringorder_lp:
1694  for(;j>=0; j--) (*iv)[j]=1;
1695  break;
1696  default: /* do nothing */;
1697  }
1698  }
1699  else
1700  {
1701  iv=new intvec(1);
1702  }
1703  LLL->m[1].rtyp=INTVEC_CMD;
1704  LLL->m[1].data=(void *)iv;
1705  LL->m[i].data=(void *)LLL;
1706  }
1707  L->m[2].rtyp=LIST_CMD;
1708  L->m[2].data=(void *)LL;
1709  // ----------------------------------------
1710  // 3: qideal
1711  L->m[3].rtyp=IDEAL_CMD;
1712  if (nCoeff_is_transExt(R->cf))
1713  L->m[3].data=(void *)idInit(1,1);
1714  else
1715  {
1716  ideal q=idInit(IDELEMS(r->qideal));
1717  q->m[0]=p_Init(R);
1718  pSetCoeff0(q->m[0],(number)(r->qideal->m[0]));
1719  L->m[3].data=(void *)q;
1720 // I->m[0] = pNSet(R->minpoly);
1721  }
1722  // ----------------------------------------
1724 static void rDecomposeC_41(leftv h,const coeffs C)
1725 /* field is R or C */
1726 {
1728  if (nCoeff_is_long_C(C)) L->Init(3);
1729  else L->Init(2);
1730  h->rtyp=LIST_CMD;
1731  h->data=(void *)L;
1732  // 0: char/ cf - ring
1733  // 1: list (var)
1734  // 2: list (ord)
1735  // ----------------------------------------
1736  // 0: char/ cf - ring
1737  L->m[0].rtyp=INT_CMD;
1738  L->m[0].data=(void *)0;
1739  // ----------------------------------------
1740  // 1:
1742  LL->Init(2);
1743  LL->m[0].rtyp=INT_CMD;
1744  LL->m[0].data=(void *)(long)si_max(C->float_len,SHORT_REAL_LENGTH/2);
1745  LL->m[1].rtyp=INT_CMD;
1746  LL->m[1].data=(void *)(long)si_max(C->float_len2,SHORT_REAL_LENGTH);
1747  L->m[1].rtyp=LIST_CMD;
1748  L->m[1].data=(void *)LL;
1749  // ----------------------------------------
1750  // 2: list (par)
1751  if (nCoeff_is_long_C(C))
1752  {
1753  L->m[2].rtyp=STRING_CMD;
1754  L->m[2].data=(void *)omStrDup(*n_ParameterNames(C));
1755  }
1756  // ----------------------------------------
1758 static void rDecomposeC(leftv h,const ring R)
1759 /* field is R or C */
1760 {
1762  if (rField_is_long_C(R)) L->Init(3);
1763  else L->Init(2);
1764  h->rtyp=LIST_CMD;
1765  h->data=(void *)L;
1766  // 0: char/ cf - ring
1767  // 1: list (var)
1768  // 2: list (ord)
1769  // ----------------------------------------
1770  // 0: char/ cf - ring
1771  L->m[0].rtyp=INT_CMD;
1772  L->m[0].data=(void *)0;
1773  // ----------------------------------------
1774  // 1:
1776  LL->Init(2);
1777  LL->m[0].rtyp=INT_CMD;
1778  LL->m[0].data=(void *)(long)si_max(R->cf->float_len,SHORT_REAL_LENGTH/2);
1779  LL->m[1].rtyp=INT_CMD;
1780  LL->m[1].data=(void *)(long)si_max(R->cf->float_len2,SHORT_REAL_LENGTH);
1781  L->m[1].rtyp=LIST_CMD;
1782  L->m[1].data=(void *)LL;
1783  // ----------------------------------------
1784  // 2: list (par)
1785  if (rField_is_long_C(R))
1786  {
1787  L->m[2].rtyp=STRING_CMD;
1788  L->m[2].data=(void *)omStrDup(*rParameter(R));
1789  }
1790  // ----------------------------------------
1791 }
1792 
1793 #ifdef HAVE_RINGS
1794 void rDecomposeRing_41(leftv h,const coeffs C)
1795 /* field is R or C */
1796 {
1798  if (nCoeff_is_Ring(C)) L->Init(1);
1799  else L->Init(2);
1800  h->rtyp=LIST_CMD;
1801  h->data=(void *)L;
1802  // 0: char/ cf - ring
1803  // 1: list (module)
1804  // ----------------------------------------
1805  // 0: char/ cf - ring
1806  L->m[0].rtyp=STRING_CMD;
1807  L->m[0].data=(void *)omStrDup("integer");
1808  // ----------------------------------------
1809  // 1: modulo
1810  if (nCoeff_is_Z(C)) return;
1812  LL->Init(2);
1813  LL->m[0].rtyp=BIGINT_CMD;
1814  LL->m[0].data=nlMapGMP((number) C->modBase, C, coeffs_BIGINT);
1815  LL->m[1].rtyp=INT_CMD;
1816  LL->m[1].data=(void *) C->modExponent;
1817  L->m[1].rtyp=LIST_CMD;
1818  L->m[1].data=(void *)LL;
1819 }
1820 #endif
1822 void rDecomposeRing(leftv h,const ring R)
1823 /* field is R or C */
1824 {
1825 #ifdef HAVE_RINGS
1827  if (rField_is_Z(R)) L->Init(1);
1828  else L->Init(2);
1829  h->rtyp=LIST_CMD;
1830  h->data=(void *)L;
1831  // 0: char/ cf - ring
1832  // 1: list (module)
1833  // ----------------------------------------
1834  // 0: char/ cf - ring
1835  L->m[0].rtyp=STRING_CMD;
1836  L->m[0].data=(void *)omStrDup("integer");
1837  // ----------------------------------------
1838  // 1: module
1839  if (rField_is_Z(R)) return;
1841  LL->Init(2);
1842  LL->m[0].rtyp=BIGINT_CMD;
1843  LL->m[0].data=nlMapGMP((number) R->cf->modBase, R->cf, R->cf); // TODO: what is this?? // extern number nlMapGMP(number from, const coeffs src, const coeffs dst); // FIXME: replace with n_InitMPZ(R->cf->modBase, coeffs_BIGINT); ?
1844  LL->m[1].rtyp=INT_CMD;
1845  LL->m[1].data=(void *) R->cf->modExponent;
1846  L->m[1].rtyp=LIST_CMD;
1847  L->m[1].data=(void *)LL;
1848 #else
1849  WerrorS("rDecomposeRing");
1850 #endif
1851 }
1852 
1855 {
1856  assume( C != NULL );
1857 
1858  // sanity check: require currRing==r for rings with polynomial data
1859  if ( nCoeff_is_algExt(C) && (C != currRing->cf))
1860  {
1861  WerrorS("ring with polynomial data must be the base ring or compatible");
1862  return TRUE;
1863  }
1864  if (nCoeff_is_numeric(C))
1865  {
1866  rDecomposeC_41(res,C);
1867  }
1868 #ifdef HAVE_RINGS
1869  else if (nCoeff_is_Ring(C))
1870  {
1872  }
1873 #endif
1874  else if ( C->extRing!=NULL )// nCoeff_is_algExt(r->cf))
1875  {
1876  rDecomposeCF(res, C->extRing, currRing);
1877  }
1878  else if(nCoeff_is_GF(C))
1879  {
1881  Lc->Init(4);
1882  // char:
1883  Lc->m[0].rtyp=INT_CMD;
1884  Lc->m[0].data=(void*)(long)C->m_nfCharQ;
1885  // var:
1887  Lv->Init(1);
1888  Lv->m[0].rtyp=STRING_CMD;
1889  Lv->m[0].data=(void *)omStrDup(*n_ParameterNames(C));
1890  Lc->m[1].rtyp=LIST_CMD;
1891  Lc->m[1].data=(void*)Lv;
1892  // ord:
1894  Lo->Init(1);
1896  Loo->Init(2);
1897  Loo->m[0].rtyp=STRING_CMD;
1898  Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
1899 
1900  intvec *iv=new intvec(1); (*iv)[0]=1;
1901  Loo->m[1].rtyp=INTVEC_CMD;
1902  Loo->m[1].data=(void *)iv;
1903 
1904  Lo->m[0].rtyp=LIST_CMD;
1905  Lo->m[0].data=(void*)Loo;
1906 
1907  Lc->m[2].rtyp=LIST_CMD;
1908  Lc->m[2].data=(void*)Lo;
1909  // q-ideal:
1910  Lc->m[3].rtyp=IDEAL_CMD;
1911  Lc->m[3].data=(void *)idInit(1,1);
1912  // ----------------------
1913  res->rtyp=LIST_CMD;
1914  res->data=(void*)Lc;
1915  }
1916  else
1917  {
1918  res->rtyp=INT_CMD;
1919  res->data=(void *)(long)C->ch;
1920  }
1921  // ----------------------------------------
1922  return FALSE;
1923 }
1925 lists rDecompose_list_cf(const ring r)
1926 {
1927  assume( r != NULL );
1928  const coeffs C = r->cf;
1929  assume( C != NULL );
1930 
1931  // sanity check: require currRing==r for rings with polynomial data
1932  if ( (r!=currRing) && (
1933  (r->qideal != NULL)
1934 #ifdef HAVE_PLURAL
1935  || (rIsPluralRing(r))
1936 #endif
1937  )
1938  )
1939  {
1940  WerrorS("ring with polynomial data must be the base ring or compatible");
1941  return NULL;
1942  }
1943  // 0: char/ cf - ring
1944  // 1: list (var)
1945  // 2: list (ord)
1946  // 3: qideal
1947  // possibly:
1948  // 4: C
1949  // 5: D
1951  if (rIsPluralRing(r))
1952  L->Init(6);
1953  else
1954  L->Init(4);
1955  // ----------------------------------------
1956  // 0: char/ cf - ring
1957  L->m[0].rtyp=CRING_CMD;
1958  L->m[0].data=(char*)r->cf; r->cf->ref++;
1959  // ----------------------------------------
1960  // 1: list (var)
1962  LL->Init(r->N);
1963  int i;
1964  for(i=0; i<r->N; i++)
1965  {
1966  LL->m[i].rtyp=STRING_CMD;
1967  LL->m[i].data=(void *)omStrDup(r->names[i]);
1968  }
1969  L->m[1].rtyp=LIST_CMD;
1970  L->m[1].data=(void *)LL;
1971  // ----------------------------------------
1972  // 2: list (ord)
1974  i=rBlocks(r)-1;
1975  LL->Init(i);
1976  i--;
1977  lists LLL;
1978  for(; i>=0; i--)
1979  {
1980  intvec *iv;
1981  int j;
1982  LL->m[i].rtyp=LIST_CMD;
1984  LLL->Init(2);
1985  LLL->m[0].rtyp=STRING_CMD;
1986  LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
1987 
1988  if(r->order[i] == ringorder_IS) // || r->order[i] == ringorder_s || r->order[i] == ringorder_S)
1989  {
1990  assume( r->block0[i] == r->block1[i] );
1991  const int s = r->block0[i];
1992  assume( -2 < s && s < 2);
1993 
1994  iv=new intvec(1);
1995  (*iv)[0] = s;
1996  }
1997  else if (r->block1[i]-r->block0[i] >=0 )
1998  {
1999  int bl=j=r->block1[i]-r->block0[i];
2000  if (r->order[i]==ringorder_M)
2001  {
2002  j=(j+1)*(j+1)-1;
2003  bl=j+1;
2004  }
2005  else if (r->order[i]==ringorder_am)
2006  {
2007  j+=r->wvhdl[i][bl+1];
2008  }
2009  iv=new intvec(j+1);
2010  if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
2011  {
2012  for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j+(j>bl)];
2013  }
2014  else switch (r->order[i])
2015  {
2016  case ringorder_dp:
2017  case ringorder_Dp:
2018  case ringorder_ds:
2019  case ringorder_Ds:
2020  case ringorder_lp:
2021  for(;j>=0; j--) (*iv)[j]=1;
2022  break;
2023  default: /* do nothing */;
2024  }
2025  }
2026  else
2027  {
2028  iv=new intvec(1);
2029  }
2030  LLL->m[1].rtyp=INTVEC_CMD;
2031  LLL->m[1].data=(void *)iv;
2032  LL->m[i].data=(void *)LLL;
2033  }
2034  L->m[2].rtyp=LIST_CMD;
2035  L->m[2].data=(void *)LL;
2036  // ----------------------------------------
2037  // 3: qideal
2038  L->m[3].rtyp=IDEAL_CMD;
2039  if (r->qideal==NULL)
2040  L->m[3].data=(void *)idInit(1,1);
2041  else
2042  L->m[3].data=(void *)idCopy(r->qideal);
2043  // ----------------------------------------
2044 #ifdef HAVE_PLURAL // NC! in rDecompose
2045  if (rIsPluralRing(r))
2046  {
2047  L->m[4].rtyp=MATRIX_CMD;
2048  L->m[4].data=(void *)mp_Copy(r->GetNC()->C, r, r);
2049  L->m[5].rtyp=MATRIX_CMD;
2050  L->m[5].data=(void *)mp_Copy(r->GetNC()->D, r, r);
2051  }
2052 #endif
2053  return L;
2054 }
2056 lists rDecompose(const ring r)
2057 {
2058  assume( r != NULL );
2059  const coeffs C = r->cf;
2060  assume( C != NULL );
2061 
2062  // sanity check: require currRing==r for rings with polynomial data
2063  if ( (r!=currRing) && (
2064  (nCoeff_is_algExt(C) && (C != currRing->cf))
2065  || (r->qideal != NULL)
2066 #ifdef HAVE_PLURAL
2067  || (rIsPluralRing(r))
2068 #endif
2069  )
2070  )
2071  {
2072  WerrorS("ring with polynomial data must be the base ring or compatible");
2073  return NULL;
2074  }
2075  // 0: char/ cf - ring
2076  // 1: list (var)
2077  // 2: list (ord)
2078  // 3: qideal
2079  // possibly:
2080  // 4: C
2081  // 5: D
2083  if (rIsPluralRing(r))
2084  L->Init(6);
2085  else
2086  L->Init(4);
2087  // ----------------------------------------
2088  // 0: char/ cf - ring
2089  if (rField_is_numeric(r))
2090  {
2091  rDecomposeC(&(L->m[0]),r);
2092  }
2093  else if (rField_is_Ring(r))
2094  {
2095  rDecomposeRing(&(L->m[0]),r);
2096  }
2097  else if ( r->cf->extRing!=NULL )// nCoeff_is_algExt(r->cf))
2098  {
2099  rDecomposeCF(&(L->m[0]), r->cf->extRing, r);
2100  }
2101  else if(rField_is_GF(r))
2102  {
2104  Lc->Init(4);
2105  // char:
2106  Lc->m[0].rtyp=INT_CMD;
2107  Lc->m[0].data=(void*)(long)r->cf->m_nfCharQ;
2108  // var:
2110  Lv->Init(1);
2111  Lv->m[0].rtyp=STRING_CMD;
2112  Lv->m[0].data=(void *)omStrDup(*rParameter(r));
2113  Lc->m[1].rtyp=LIST_CMD;
2114  Lc->m[1].data=(void*)Lv;
2115  // ord:
2117  Lo->Init(1);
2119  Loo->Init(2);
2120  Loo->m[0].rtyp=STRING_CMD;
2121  Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
2122 
2123  intvec *iv=new intvec(1); (*iv)[0]=1;
2124  Loo->m[1].rtyp=INTVEC_CMD;
2125  Loo->m[1].data=(void *)iv;
2126 
2127  Lo->m[0].rtyp=LIST_CMD;
2128  Lo->m[0].data=(void*)Loo;
2129 
2130  Lc->m[2].rtyp=LIST_CMD;
2131  Lc->m[2].data=(void*)Lo;
2132  // q-ideal:
2133  Lc->m[3].rtyp=IDEAL_CMD;
2134  Lc->m[3].data=(void *)idInit(1,1);
2135  // ----------------------
2136  L->m[0].rtyp=LIST_CMD;
2137  L->m[0].data=(void*)Lc;
2138  }
2139  else
2140  {
2141  L->m[0].rtyp=INT_CMD;
2142  L->m[0].data=(void *)(long)r->cf->ch;
2143  }
2144  // ----------------------------------------
2145  // 1: list (var)
2147  LL->Init(r->N);
2148  int i;
2149  for(i=0; i<r->N; i++)
2150  {
2151  LL->m[i].rtyp=STRING_CMD;
2152  LL->m[i].data=(void *)omStrDup(r->names[i]);
2153  }
2154  L->m[1].rtyp=LIST_CMD;
2155  L->m[1].data=(void *)LL;
2156  // ----------------------------------------
2157  // 2: list (ord)
2159  i=rBlocks(r)-1;
2160  LL->Init(i);
2161  i--;
2162  lists LLL;
2163  for(; i>=0; i--)
2164  {
2165  intvec *iv;
2166  int j;
2167  LL->m[i].rtyp=LIST_CMD;
2169  LLL->Init(2);
2170  LLL->m[0].rtyp=STRING_CMD;
2171  LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
2172 
2173  if((r->order[i] == ringorder_IS)
2174  || (r->order[i] == ringorder_s)) //|| r->order[i] == ringorder_S)
2175  {
2176  assume( r->block0[i] == r->block1[i] );
2177  const int s = r->block0[i];
2178  assume( (-2 < s && s < 2)||(r->order[i] != ringorder_IS));
2179 
2180  iv=new intvec(1);
2181  (*iv)[0] = s;
2182  }
2183  else if (r->block1[i]-r->block0[i] >=0 )
2184  {
2185  int bl=j=r->block1[i]-r->block0[i];
2186  if (r->order[i]==ringorder_M)
2187  {
2188  j=(j+1)*(j+1)-1;
2189  bl=j+1;
2190  }
2191  else if (r->order[i]==ringorder_am)
2192  {
2193  j+=r->wvhdl[i][bl+1];
2194  }
2195  iv=new intvec(j+1);
2196  if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
2197  {
2198  for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j+(j>bl)];
2199  }
2200  else switch (r->order[i])
2201  {
2202  case ringorder_dp:
2203  case ringorder_Dp:
2204  case ringorder_ds:
2205  case ringorder_Ds:
2206  case ringorder_lp:
2207  for(;j>=0; j--) (*iv)[j]=1;
2208  break;
2209  default: /* do nothing */;
2210  }
2211  }
2212  else
2213  {
2214  iv=new intvec(1);
2215  }
2216  LLL->m[1].rtyp=INTVEC_CMD;
2217  LLL->m[1].data=(void *)iv;
2218  LL->m[i].data=(void *)LLL;
2219  }
2220  L->m[2].rtyp=LIST_CMD;
2221  L->m[2].data=(void *)LL;
2222  // ----------------------------------------
2223  // 3: qideal
2224  L->m[3].rtyp=IDEAL_CMD;
2225  if (r->qideal==NULL)
2226  L->m[3].data=(void *)idInit(1,1);
2227  else
2228  L->m[3].data=(void *)idCopy(r->qideal);
2229  // ----------------------------------------
2230 #ifdef HAVE_PLURAL // NC! in rDecompose
2231  if (rIsPluralRing(r))
2232  {
2233  L->m[4].rtyp=MATRIX_CMD;
2234  L->m[4].data=(void *)mp_Copy(r->GetNC()->C, r, r);
2235  L->m[5].rtyp=MATRIX_CMD;
2236  L->m[5].data=(void *)mp_Copy(r->GetNC()->D, r, r);
2237  }
2238 #endif
2239  return L;
2240 }
2242 void rComposeC(lists L, ring R)
2243 /* field is R or C */
2244 {
2245  // ----------------------------------------
2246  // 0: char/ cf - ring
2247  if ((L->m[0].rtyp!=INT_CMD) || (L->m[0].data!=(char *)0))
2248  {
2249  WerrorS("invalid coeff. field description, expecting 0");
2250  return;
2251  }
2252 // R->cf->ch=0;
2253  // ----------------------------------------
2254  // 1:
2255  if (L->m[1].rtyp!=LIST_CMD)
2256  {
2257  WerrorS("invalid coeff. field description, expecting precision list");
2258  return;
2259  }
2260  lists LL=(lists)L->m[1].data;
2261  if (((LL->nr!=2)
2262  || (LL->m[0].rtyp!=INT_CMD)
2263  || (LL->m[1].rtyp!=INT_CMD))
2264  && ((LL->nr!=1)
2265  || (LL->m[0].rtyp!=INT_CMD)))
2266  {
2267  WerrorS("invalid coeff. field description list");
2268  return;
2269  }
2270  int r1=(int)(long)LL->m[0].data;
2271  int r2=(int)(long)LL->m[1].data;
2272  if (L->nr==2) // complex
2273  R->cf = nInitChar(n_long_C, NULL);
2274  else if ((r1<=SHORT_REAL_LENGTH)
2275  && (r2<=SHORT_REAL_LENGTH))
2276  R->cf = nInitChar(n_R, NULL);
2277  else
2278  {
2280  p->float_len=r1;
2281  p->float_len2=r2;
2282  R->cf = nInitChar(n_long_R, p);
2283  }
2284 
2285  if ((r1<=SHORT_REAL_LENGTH) // should go into nInitChar
2286  && (r2<=SHORT_REAL_LENGTH))
2287  {
2288  R->cf->float_len=SHORT_REAL_LENGTH/2;
2289  R->cf->float_len2=SHORT_REAL_LENGTH;
2290  }
2291  else
2292  {
2293  R->cf->float_len=si_min(r1,32767);
2294  R->cf->float_len2=si_min(r2,32767);
2295  }
2296  // ----------------------------------------
2297  // 2: list (par)
2298  if (L->nr==2)
2299  {
2300  //R->cf->extRing->N=1;
2301  if (L->m[2].rtyp!=STRING_CMD)
2302  {
2303  WerrorS("invalid coeff. field description, expecting parameter name");
2304  return;
2305  }
2306  //(rParameter(R))=(char**)omAlloc0(rPar(R)*sizeof(char_ptr));
2307  rParameter(R)[0]=omStrDup((char *)L->m[2].data);
2308  }
2309  // ----------------------------------------
2310 }
2311 
2312 #ifdef HAVE_RINGS
2313 void rComposeRing(lists L, ring R)
2314 /* field is R or C */
2315 {
2316  // ----------------------------------------
2317  // 0: string: integer
2318  // no further entries --> Z
2319  mpz_t modBase;
2320  unsigned int modExponent = 1;
2321 
2322  if (L->nr == 0)
2323  {
2324  mpz_init_set_ui(modBase,0);
2325  modExponent = 1;
2326  }
2327  // ----------------------------------------
2328  // 1:
2329  else
2330  {
2331  if (L->m[1].rtyp!=LIST_CMD) WerrorS("invalid data, expecting list of numbers");
2332  lists LL=(lists)L->m[1].data;
2333  if ((LL->nr >= 0) && LL->m[0].rtyp == BIGINT_CMD)
2334  {
2335  number tmp= (number) LL->m[0].data; // never use CopyD() on list elements
2336  // assume that tmp is integer, not rational
2337  mpz_init(modBase);
2338  n_MPZ (modBase, tmp, coeffs_BIGINT);
2339  }
2340  else if (LL->nr >= 0 && LL->m[0].rtyp == INT_CMD)
2341  {
2342  mpz_init_set_ui(modBase,(unsigned long) LL->m[0].data);
2343  }
2344  else
2345  {
2346  mpz_init_set_ui(modBase,0);
2347  }
2348  if (LL->nr >= 1)
2349  {
2350  modExponent = (unsigned long) LL->m[1].data;
2351  }
2352  else
2353  {
2354  modExponent = 1;
2355  }
2356  }
2357  // ----------------------------------------
2358  if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_sgn1(modBase) < 0))
2359  {
2360  WerrorS("Wrong ground ring specification (module is 1)");
2361  return;
2362  }
2363  if (modExponent < 1)
2364  {
2365  WerrorS("Wrong ground ring specification (exponent smaller than 1)");
2366  return;
2367  }
2368  // module is 0 ---> integers
2369  if (mpz_sgn1(modBase) == 0)
2370  {
2371  R->cf=nInitChar(n_Z,NULL);
2372  }
2373  // we have an exponent
2374  else if (modExponent > 1)
2375  {
2376  //R->cf->ch = R->cf->modExponent;
2377  if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
2378  {
2379  /* this branch should be active for modExponent = 2..32 resp. 2..64,
2380  depending on the size of a long on the respective platform */
2381  R->cf=nInitChar(n_Z2m,(void*)(long)modExponent); // Use Z/2^ch
2382  }
2383  else
2384  {
2385  //ringtype 3
2386  ZnmInfo info;
2387  info.base= modBase;
2388  info.exp= modExponent;
2389  R->cf=nInitChar(n_Znm,(void*) &info);
2390  }
2391  }
2392  // just a module m > 1
2393  else
2394  {
2395  //ringtype = 2;
2396  //const int ch = mpz_get_ui(modBase);
2397  ZnmInfo info;
2398  info.base= modBase;
2399  info.exp= modExponent;
2400  R->cf=nInitChar(n_Zn,(void*) &info);
2401  }
2402  mpz_clear(modBase);
2403 }
2404 #endif
2406 static void rRenameVars(ring R)
2407 {
2408  int i,j;
2409  BOOLEAN ch;
2410  do
2411  {
2412  ch=0;
2413  for(i=0;i<R->N-1;i++)
2414  {
2415  for(j=i+1;j<R->N;j++)
2416  {
2417  if (strcmp(R->names[i],R->names[j])==0)
2418  {
2419  ch=TRUE;
2420  Warn("name conflict var(%d) and var(%d): `%s`, rename to `@%s`",i+1,j+1,R->names[i],R->names[i]);
2421  omFree(R->names[j]);
2422  R->names[j]=(char *)omAlloc(2+strlen(R->names[i]));
2423  sprintf(R->names[j],"@%s",R->names[i]);
2424  }
2425  }
2426  }
2427  }
2428  while (ch);
2429  for(i=0;i<rPar(R); i++)
2430  {
2431  for(j=0;j<R->N;j++)
2432  {
2433  if (strcmp(rParameter(R)[i],R->names[j])==0)
2434  {
2435  Warn("name conflict par(%d) and var(%d): `%s`, renaming the VARIABLE to `@@(%d)`",i+1,j+1,R->names[j],i+1);
2436 // omFree(rParameter(R)[i]);
2437 // rParameter(R)[i]=(char *)omAlloc(10);
2438 // sprintf(rParameter(R)[i],"@@(%d)",i+1);
2439  omFree(R->names[j]);
2440  R->names[j]=(char *)omAlloc(10);
2441  sprintf(R->names[j],"@@(%d)",i+1);
2442  }
2443  }
2444  }
2445 }
2447 static inline BOOLEAN rComposeVar(const lists L, ring R)
2448 {
2449  assume(R!=NULL);
2450  if (L->m[1].Typ()==LIST_CMD)
2451  {
2452  lists v=(lists)L->m[1].Data();
2453  R->N = v->nr+1;
2454  if (R->N<=0)
2455  {
2456  WerrorS("no ring variables");
2457  return TRUE;
2458  }
2459  R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
2460  int i;
2461  for(i=0;i<R->N;i++)
2462  {
2463  if (v->m[i].Typ()==STRING_CMD)
2464  R->names[i]=omStrDup((char *)v->m[i].Data());
2465  else if (v->m[i].Typ()==POLY_CMD)
2466  {
2467  poly p=(poly)v->m[i].Data();
2468  int nr=pIsPurePower(p);
2469  if (nr>0)
2470  R->names[i]=omStrDup(currRing->names[nr-1]);
2471  else
2472  {
2473  Werror("var name %d must be a string or a ring variable",i+1);
2474  return TRUE;
2475  }
2476  }
2477  else
2478  {
2479  Werror("var name %d must be `string` (not %d)",i+1, v->m[i].Typ());
2480  return TRUE;
2481  }
2482  }
2483  }
2484  else
2485  {
2486  WerrorS("variable must be given as `list`");
2487  return TRUE;
2488  }
2489  return FALSE;
2490 }
2492 static inline BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
2493 {
2494  assume(R!=NULL);
2495  long bitmask=0L;
2496  if (L->m[2].Typ()==LIST_CMD)
2497  {
2498  lists v=(lists)L->m[2].Data();
2499  int n= v->nr+2;
2500  int j_in_R,j_in_L;
2501  // do we have an entry "L",... ?: set bitmask
2502  for (int j=0; j < n-1; j++)
2503  {
2504  if (v->m[j].Typ()==LIST_CMD)
2505  {
2506  lists vv=(lists)v->m[j].Data();
2507  if ((vv->nr==1)
2508  &&(vv->m[0].Typ()==STRING_CMD)
2509  &&(strcmp((char*)vv->m[0].Data(),"L")==0))
2510  {
2511  number nn=(number)vv->m[1].Data();
2512  if (vv->m[1].Typ()==BIGINT_CMD)
2513  bitmask=n_Int(nn,coeffs_BIGINT);
2514  else if (vv->m[1].Typ()==INT_CMD)
2515  bitmask=(long)nn;
2516  else
2517  {
2518  Werror("illegal argument for pseudo ordering L: %d",vv->m[1].Typ());
2519  return TRUE;
2520  }
2521  break;
2522  }
2523  }
2524  }
2525  if (bitmask!=0) n--;
2526 
2527  // initialize fields of R
2528  R->order=(rRingOrder_t *)omAlloc0(n*sizeof(rRingOrder_t));
2529  R->block0=(int *)omAlloc0(n*sizeof(int));
2530  R->block1=(int *)omAlloc0(n*sizeof(int));
2531  R->wvhdl=(int**)omAlloc0(n*sizeof(int_ptr));
2532  // init order, so that rBlocks works correctly
2533  for (j_in_R= n-2; j_in_R>=0; j_in_R--)
2534  R->order[j_in_R] = ringorder_unspec;
2535  // orderings
2536  for(j_in_R=0,j_in_L=0;j_in_R<n-1;j_in_R++,j_in_L++)
2537  {
2538  // todo: a(..), M
2539  if (v->m[j_in_L].Typ()!=LIST_CMD)
2540  {
2541  WerrorS("ordering must be list of lists");
2542  return TRUE;
2543  }
2544  lists vv=(lists)v->m[j_in_L].Data();
2545  if ((vv->nr==1)
2546  && (vv->m[0].Typ()==STRING_CMD))
2547  {
2548  if (strcmp((char*)vv->m[0].Data(),"L")==0)
2549  {
2550  j_in_R--;
2551  continue;
2552  }
2553  if ((vv->m[1].Typ()!=INTVEC_CMD) && (vv->m[1].Typ()!=INT_CMD))
2554  {
2555  PrintS(lString(vv));
2556  WerrorS("ordering name must be a (string,intvec)(1)");
2557  return TRUE;
2558  }
2559  R->order[j_in_R]=rOrderName(omStrDup((char*)vv->m[0].Data())); // assume STRING
2560 
2561  if (j_in_R==0) R->block0[0]=1;
2562  else
2563  {
2564  int jj=j_in_R-1;
2565  while((jj>=0)
2566  && ((R->order[jj]== ringorder_a)
2567  || (R->order[jj]== ringorder_aa)
2568  || (R->order[jj]== ringorder_am)
2569  || (R->order[jj]== ringorder_c)
2570  || (R->order[jj]== ringorder_C)
2571  || (R->order[jj]== ringorder_s)
2572  || (R->order[jj]== ringorder_S)
2573  ))
2574  {
2575  //Print("jj=%, skip %s\n",rSimpleOrdStr(R->order[jj]));
2576  jj--;
2577  }
2578  if (jj<0) R->block0[j_in_R]=1;
2579  else R->block0[j_in_R]=R->block1[jj]+1;
2580  }
2581  intvec *iv;
2582  if (vv->m[1].Typ()==INT_CMD)
2583  iv=new intvec((int)(long)vv->m[1].Data(),(int)(long)vv->m[1].Data());
2584  else
2585  iv=ivCopy((intvec*)vv->m[1].Data()); //assume INTVEC
2586  int iv_len=iv->length();
2587  if ((R->order[j_in_R]!=ringorder_s)
2588  &&(R->order[j_in_R]!=ringorder_c)
2589  &&(R->order[j_in_R]!=ringorder_C))
2590  {
2591  R->block1[j_in_R]=si_max(R->block0[j_in_R],R->block0[j_in_R]+iv_len-1);
2592  if (R->block1[j_in_R]>R->N)
2593  {
2594  if (R->block0[j_in_R]>R->N)
2595  {
2596  Werror("not enough variables for ordering %d (%s)",j_in_R,rSimpleOrdStr(R->order[j_in_R]));
2597  return TRUE;
2598  }
2599  R->block1[j_in_R]=R->N;
2600  iv_len=R->block1[j_in_R]-R->block0[j_in_R]+1;
2601  }
2602  //Print("block %d from %d to %d\n",j,R->block0[j], R->block1[j]);
2603  }
2604  int i;
2605  switch (R->order[j_in_R])
2606  {
2607  case ringorder_ws:
2608  case ringorder_Ws:
2609  R->OrdSgn=-1;
2610  case ringorder_aa:
2611  case ringorder_a:
2612  case ringorder_wp:
2613  case ringorder_Wp:
2614  R->wvhdl[j_in_R] =( int *)omAlloc(iv_len*sizeof(int));
2615  for (i=0; i<iv_len;i++)
2616  {
2617  R->wvhdl[j_in_R][i]=(*iv)[i];
2618  }
2619  break;
2620  case ringorder_am:
2621  R->wvhdl[j_in_R] =( int *)omAlloc((iv->length()+1)*sizeof(int));
2622  for (i=0; i<iv_len;i++)
2623  {
2624  R->wvhdl[j_in_R][i]=(*iv)[i];
2625  }
2626  R->wvhdl[j_in_R][i]=iv->length() - iv_len;
2627  //printf("ivlen:%d,iv->len:%d,mod:%d\n",iv_len,iv->length(),R->wvhdl[j][i]);
2628  for (; i<iv->length(); i++)
2629  {
2630  R->wvhdl[j_in_R][i+1]=(*iv)[i];
2631  }
2632  break;
2633  case ringorder_M:
2634  R->wvhdl[j_in_R] =( int *)omAlloc((iv->length())*sizeof(int));
2635  for (i=0; i<iv->length();i++) R->wvhdl[j_in_R][i]=(*iv)[i];
2636  R->block1[j_in_R]=si_max(R->block0[j_in_R],R->block0[j_in_R]+(int)sqrt((double)(iv->length()-1)));
2637  if (R->block1[j_in_R]>R->N)
2638  {
2639  WerrorS("ordering matrix too big");
2640  return TRUE;
2641  }
2642  break;
2643  case ringorder_ls:
2644  case ringorder_ds:
2645  case ringorder_Ds:
2646  case ringorder_rs:
2647  R->OrdSgn=-1;
2648  case ringorder_lp:
2649  case ringorder_dp:
2650  case ringorder_Dp:
2651  case ringorder_rp:
2652  break;
2653  case ringorder_S:
2654  break;
2655  case ringorder_c:
2656  case ringorder_C:
2657  R->block1[j_in_R]=R->block0[j_in_R]=0;
2658  break;
2659 
2660  case ringorder_s:
2661  R->block1[j_in_R]=R->block0[j_in_R]=(*iv)[0];
2662  rSetSyzComp(R->block0[j_in_R],R);
2663  break;
2664 
2665  case ringorder_IS:
2666  {
2667  R->block1[j_in_R] = R->block0[j_in_R] = 0;
2668  if( iv->length() > 0 )
2669  {
2670  const int s = (*iv)[0];
2671  assume( -2 < s && s < 2 );
2672  R->block1[j_in_R] = R->block0[j_in_R] = s;
2673  }
2674  break;
2675  }
2676  case 0:
2677  case ringorder_unspec:
2678  break;
2679  case ringorder_L: /* cannot happen */
2680  case ringorder_a64: /*not implemented */
2681  WerrorS("ring order not implemented");
2682  return TRUE;
2683  }
2684  delete iv;
2685  }
2686  else
2687  {
2688  PrintS(lString(vv));
2689  WerrorS("ordering name must be a (string,intvec)");
2690  return TRUE;
2691  }
2692  }
2693  // sanity check
2694  j_in_R=n-2;
2695  if ((R->order[j_in_R]==ringorder_c)
2696  || (R->order[j_in_R]==ringorder_C)
2697  || (R->order[j_in_R]==ringorder_unspec)) j_in_R--;
2698  if (R->block1[j_in_R] != R->N)
2699  {
2700  if (((R->order[j_in_R]==ringorder_dp) ||
2701  (R->order[j_in_R]==ringorder_ds) ||
2702  (R->order[j_in_R]==ringorder_Dp) ||
2703  (R->order[j_in_R]==ringorder_Ds) ||
2704  (R->order[j_in_R]==ringorder_rp) ||
2705  (R->order[j_in_R]==ringorder_rs) ||
2706  (R->order[j_in_R]==ringorder_lp) ||
2707  (R->order[j_in_R]==ringorder_ls))
2708  &&
2709  R->block0[j_in_R] <= R->N)
2710  {
2711  R->block1[j_in_R] = R->N;
2712  }
2713  else
2714  {
2715  Werror("ordering incomplete: size (%d) should be %d",R->block1[j_in_R],R->N);
2716  return TRUE;
2717  }
2718  }
2719  if (R->block0[j_in_R]>R->N)
2720  {
2721  Werror("not enough variables (%d) for ordering block %d, scanned so far:",R->N,j_in_R+1);
2722  for(int ii=0;ii<=j_in_R;ii++)
2723  Werror("ord[%d]: %s from v%d to v%d",ii+1,rSimpleOrdStr(R->order[ii]),R->block0[ii],R->block1[ii]);
2724  return TRUE;
2725  }
2726  if (check_comp)
2727  {
2728  BOOLEAN comp_order=FALSE;
2729  int jj;
2730  for(jj=0;jj<n;jj++)
2731  {
2732  if ((R->order[jj]==ringorder_c) ||
2733  (R->order[jj]==ringorder_C)) { comp_order=TRUE; break; }
2734  }
2735  if (!comp_order)
2736  {
2737  R->order=(rRingOrder_t*)omRealloc0Size(R->order,n*sizeof(rRingOrder_t),(n+1)*sizeof(rRingOrder_t));
2738  R->block0=(int*)omRealloc0Size(R->block0,n*sizeof(int),(n+1)*sizeof(int));
2739  R->block1=(int*)omRealloc0Size(R->block1,n*sizeof(int),(n+1)*sizeof(int));
2740  R->wvhdl=(int**)omRealloc0Size(R->wvhdl,n*sizeof(int_ptr),(n+1)*sizeof(int_ptr));
2741  R->order[n-1]=ringorder_C;
2742  R->block0[n-1]=0;
2743  R->block1[n-1]=0;
2744  R->wvhdl[n-1]=NULL;
2745  n++;
2746  }
2747  }
2748  }
2749  else
2750  {
2751  WerrorS("ordering must be given as `list`");
2752  return TRUE;
2753  }
2754  if (bitmask!=0) R->bitmask=bitmask*2;
2755  return FALSE;
2756 }
2758 ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask,const int isLetterplace)
2759 {
2760  if ((L->nr!=3)
2761 #ifdef HAVE_PLURAL
2762  &&(L->nr!=5)
2763 #endif
2764  )
2765  return NULL;
2766  int is_gf_char=0;
2767  // 0: char/ cf - ring
2768  // 1: list (var)
2769  // 2: list (ord)
2770  // 3: qideal
2771  // possibly:
2772  // 4: C
2773  // 5: D
2774 
2775  ring R = (ring) omAlloc0Bin(sip_sring_bin);
2776 
2777  // ------------------------------------------------------------------
2778  // 0: char:
2779  if (L->m[0].Typ()==CRING_CMD)
2780  {
2781  R->cf=(coeffs)L->m[0].Data();
2782  R->cf->ref++;
2783  }
2784  else if (L->m[0].Typ()==INT_CMD)
2785  {
2786  int ch = (int)(long)L->m[0].Data();
2787  assume( ch >= 0 );
2788 
2789  if (ch == 0) // Q?
2790  R->cf = nInitChar(n_Q, NULL);
2791  else
2792  {
2793  int l = IsPrime(ch); // Zp?
2794  if( l != ch )
2795  {
2796  Warn("%d is invalid characteristic of ground field. %d is used.", ch, l);
2797  ch = l;
2798  }
2799  #ifndef TEST_ZN_AS_ZP
2800  R->cf = nInitChar(n_Zp, (void*)(long)ch);
2801  #else
2802  mpz_t modBase;
2803  mpz_init_set_ui(modBase,(long) ch);
2804  ZnmInfo info;
2805  info.base= modBase;
2806  info.exp= 1;
2807  R->cf=nInitChar(n_Zn,(void*) &info); //exponent is missing
2808  R->cf->is_field=1;
2809  R->cf->is_domain=1;
2810  R->cf->has_simple_Inverse=1;
2811  #endif
2812  }
2813  }
2814  else if (L->m[0].Typ()==LIST_CMD) // something complicated...
2815  {
2816  lists LL=(lists)L->m[0].Data();
2817 
2818 #ifdef HAVE_RINGS
2819  if (LL->m[0].Typ() == STRING_CMD) // 1st comes a string?
2820  {
2821  rComposeRing(LL, R); // Ring!?
2822  }
2823  else
2824 #endif
2825  if (LL->nr < 3)
2826  rComposeC(LL,R); // R, long_R, long_C
2827  else
2828  {
2829  if (LL->m[0].Typ()==INT_CMD)
2830  {
2831  int ch = (int)(long)LL->m[0].Data();
2832  while ((ch!=fftable[is_gf_char]) && (fftable[is_gf_char])) is_gf_char++;
2833  if (fftable[is_gf_char]==0) is_gf_char=-1;
2834 
2835  if(is_gf_char!= -1)
2836  {
2837  GFInfo param;
2838 
2839  param.GFChar = ch;
2840  param.GFDegree = 1;
2841  param.GFPar_name = (const char*)(((lists)(LL->m[1].Data()))->m[0].Data());
2842 
2843  // nfInitChar should be able to handle the case when ch is in fftables!
2844  R->cf = nInitChar(n_GF, (void*)&param);
2845  }
2846  }
2847 
2848  if( R->cf == NULL )
2849  {
2850  ring extRing = rCompose((lists)L->m[0].Data(),FALSE,0x7fff);
2851 
2852  if (extRing==NULL)
2853  {
2854  WerrorS("could not create the specified coefficient field");
2855  goto rCompose_err;
2856  }
2857 
2858  if( extRing->qideal != NULL ) // Algebraic extension
2859  {
2860  AlgExtInfo extParam;
2861 
2862  extParam.r = extRing;
2863 
2864  R->cf = nInitChar(n_algExt, (void*)&extParam);
2865  }
2866  else // Transcendental extension
2867  {
2868  TransExtInfo extParam;
2869  extParam.r = extRing;
2870  assume( extRing->qideal == NULL );
2871 
2872  R->cf = nInitChar(n_transExt, &extParam);
2873  }
2874  }
2875  }
2876  }
2877  else
2878  {
2879  WerrorS("coefficient field must be described by `int` or `list`");
2880  goto rCompose_err;
2881  }
2882 
2883  if( R->cf == NULL )
2884  {
2885  WerrorS("could not create coefficient field described by the input!");
2886  goto rCompose_err;
2887  }
2888 
2889  // ------------------------- VARS ---------------------------
2890  if (rComposeVar(L,R)) goto rCompose_err;
2891  // ------------------------ ORDER ------------------------------
2892  if (rComposeOrder(L,check_comp,R)) goto rCompose_err;
2893 
2894  // ------------------------ ??????? --------------------
2895 
2896  if (!isLetterplace) rRenameVars(R);
2897  #ifdef HAVE_SHIFTBBA
2898  else
2899  {
2900  R->isLPring=isLetterplace;
2901  R->ShortOut=FALSE;
2902  R->CanShortOut=FALSE;
2903  }
2904  #endif
2905  if (bitmask!=0x7fff) R->bitmask=bitmask*2;
2906  rComplete(R);
2907 
2908  // ------------------------ Q-IDEAL ------------------------
2909 
2910  if (L->m[3].Typ()==IDEAL_CMD)
2911  {
2912  ideal q=(ideal)L->m[3].Data();
2913  if (q->m[0]!=NULL)
2914  {
2915  if (R->cf != currRing->cf) //->cf->ch!=currRing->cf->ch)
2916  {
2917  #if 0
2918  WerrorS("coefficient fields must be equal if q-ideal !=0");
2919  goto rCompose_err;
2920  #else
2921  ring orig_ring=currRing;
2922  rChangeCurrRing(R);
2923  int *perm=NULL;
2924  int *par_perm=NULL;
2925  int par_perm_size=0;
2926  nMapFunc nMap;
2927 
2928  if ((nMap=nSetMap(orig_ring->cf))==NULL)
2929  {
2930  if (rEqual(orig_ring,currRing))
2931  {
2932  nMap=n_SetMap(currRing->cf, currRing->cf);
2933  }
2934  else
2935  // Allow imap/fetch to be make an exception only for:
2936  if ( (rField_is_Q_a(orig_ring) && // Q(a..) -> Q(a..) || Q || Zp || Zp(a)
2940  ||
2941  (rField_is_Zp_a(orig_ring) && // Zp(a..) -> Zp(a..) || Zp
2942  (rField_is_Zp(currRing, rInternalChar(orig_ring)) ||
2943  rField_is_Zp_a(currRing, rInternalChar(orig_ring)))) )
2944  {
2945  par_perm_size=rPar(orig_ring);
2946 
2947 // if ((orig_ring->minpoly != NULL) || (orig_ring->qideal != NULL))
2948 // naSetChar(rInternalChar(orig_ring),orig_ring);
2949 // else ntSetChar(rInternalChar(orig_ring),orig_ring);
2950 
2951  nSetChar(currRing->cf);
2952  }
2953  else
2954  {
2955  WerrorS("coefficient fields must be equal if q-ideal !=0");
2956  goto rCompose_err;
2957  }
2958  }
2959  perm=(int *)omAlloc0((orig_ring->N+1)*sizeof(int));
2960  if (par_perm_size!=0)
2961  par_perm=(int *)omAlloc0(par_perm_size*sizeof(int));
2962  int i;
2963  #if 0
2964  // use imap:
2965  maFindPerm(orig_ring->names,orig_ring->N,orig_ring->parameter,orig_ring->P,
2966  currRing->names,currRing->N,currRing->parameter, currRing->P,
2967  perm,par_perm, currRing->ch);
2968  #else
2969  // use fetch
2970  if ((rPar(orig_ring)>0) && (rPar(currRing)==0))
2971  {
2972  for(i=si_min(rPar(orig_ring),rVar(currRing))-1;i>=0;i--) par_perm[i]=i+1;
2973  }
2974  else if (par_perm_size!=0)
2975  for(i=si_min(rPar(orig_ring),rPar(currRing))-1;i>=0;i--) par_perm[i]=-(i+1);
2976  for(i=si_min(orig_ring->N,rVar(currRing));i>0;i--) perm[i]=i;
2977  #endif
2978  ideal dest_id=idInit(IDELEMS(q),1);
2979  for(i=IDELEMS(q)-1; i>=0; i--)
2980  {
2981  dest_id->m[i]=p_PermPoly(q->m[i],perm,orig_ring, currRing,nMap,
2982  par_perm,par_perm_size);
2983  // PrintS("map:");pWrite(dest_id->m[i]);PrintLn();
2984  pTest(dest_id->m[i]);
2985  }
2986  R->qideal=dest_id;
2987  if (perm!=NULL)
2988  omFreeSize((ADDRESS)perm,(orig_ring->N+1)*sizeof(int));
2989  if (par_perm!=NULL)
2990  omFreeSize((ADDRESS)par_perm,par_perm_size*sizeof(int));
2991  rChangeCurrRing(orig_ring);
2992  #endif
2993  }
2994  else
2995  R->qideal=idrCopyR(q,currRing,R);
2996  }
2997  }
2998  else
2999  {
3000  WerrorS("q-ideal must be given as `ideal`");
3001  goto rCompose_err;
3002  }
3003 
3004 
3005  // ---------------------------------------------------------------
3006  #ifdef HAVE_PLURAL
3007  if (L->nr==5)
3008  {
3009  if (nc_CallPlural((matrix)L->m[4].Data(),
3010  (matrix)L->m[5].Data(),
3011  NULL,NULL,
3012  R,
3013  true, // !!!
3014  true, false,
3015  currRing, FALSE)) goto rCompose_err;
3016  // takes care about non-comm. quotient! i.e. calls "nc_SetupQuotient" due to last true
3017  }
3018  #endif
3019  return R;
3020 
3021 rCompose_err:
3022  if (R->N>0)
3023  {
3024  int i;
3025  if (R->names!=NULL)
3026  {
3027  i=R->N-1;
3028  while (i>=0) { omfree(R->names[i]); i--; }
3029  omFree(R->names);
3030  }
3031  }
3032  omfree(R->order);
3033  omfree(R->block0);
3034  omfree(R->block1);
3035  omfree(R->wvhdl);
3036  omFree(R);
3037  return NULL;
3038 }
3039 
3040 // from matpol.cc
3041 
3042 /*2
3043 * compute the jacobi matrix of an ideal
3044 */
3046 {
3047  int i,j;
3048  matrix result;
3049  ideal id=(ideal)a->Data();
3050 
3051  result =mpNew(IDELEMS(id),rVar(currRing));
3052  for (i=1; i<=IDELEMS(id); i++)
3053  {
3054  for (j=1; j<=rVar(currRing); j++)
3055  {
3056  MATELEM(result,i,j) = pDiff(id->m[i-1],j);
3057  }
3058  }
3059  res->data=(char *)result;
3060  return FALSE;
3061 }
3062 
3063 /*2
3064 * returns the Koszul-matrix of degree d of a vectorspace with dimension n
3065 * uses the first n entrees of id, if id <> NULL
3066 */
3067 BOOLEAN mpKoszul(leftv res,leftv c/*ip*/, leftv b/*in*/, leftv id)
3068 {
3069  int n=(int)(long)b->Data();
3070  int d=(int)(long)c->Data();
3071  int k,l,sign,row,col;
3072  matrix result;
3073  ideal temp;
3074  BOOLEAN bo;
3075  poly p;
3076 
3077  if ((d>n) || (d<1) || (n<1))
3078  {
3079  res->data=(char *)mpNew(1,1);
3080  return FALSE;
3081  }
3082  int *choise = (int*)omAlloc(d*sizeof(int));
3083  if (id==NULL)
3084  temp=idMaxIdeal(1);
3085  else
3086  temp=(ideal)id->Data();
3087 
3088  k = binom(n,d);
3089  l = k*d;
3090  l /= n-d+1;
3091  result =mpNew(l,k);
3092  col = 1;
3093  idInitChoise(d,1,n,&bo,choise);
3094  while (!bo)
3095  {
3096  sign = 1;
3097  for (l=1;l<=d;l++)
3098  {
3099  if (choise[l-1]<=IDELEMS(temp))
3100  {
3101  p = pCopy(temp->m[choise[l-1]-1]);
3102  if (sign == -1) p = pNeg(p);
3103  sign *= -1;
3104  row = idGetNumberOfChoise(l-1,d,1,n,choise);
3105  MATELEM(result,row,col) = p;
3106  }
3107  }
3108  col++;
3109  idGetNextChoise(d,n,&bo,choise);
3110  }
3111  omFreeSize(choise,d*sizeof(int));
3112  if (id==NULL) idDelete(&temp);
3113 
3114  res->data=(char *)result;
3115  return FALSE;
3116 }
3117 
3118 // from syz1.cc
3119 /*2
3120 * read out the Betti numbers from resolution
3121 * (interpreter interface)
3122 */
3124 {
3125  syStrategy syzstr=(syStrategy)u->Data();
3126 
3127  BOOLEAN minim=(int)(long)w->Data();
3128  int row_shift=0;
3129  int add_row_shift=0;
3130  intvec *weights=NULL;
3131  intvec *ww=(intvec *)atGet(u,"isHomog",INTVEC_CMD);
3132  if (ww!=NULL)
3133  {
3134  weights=ivCopy(ww);
3135  add_row_shift = ww->min_in();
3136  (*weights) -= add_row_shift;
3137  }
3138 
3139  res->data=(void *)syBettiOfComputation(syzstr,minim,&row_shift,weights);
3140  //row_shift += add_row_shift;
3141  //Print("row_shift=%d, add_row_shift=%d\n",row_shift,add_row_shift);
3142  atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
3143 
3144  return FALSE;
3147 {
3148  sleftv tmp;
3149  memset(&tmp,0,sizeof(tmp));
3150  tmp.rtyp=INT_CMD;
3151  tmp.data=(void *)1;
3152  return syBetti2(res,u,&tmp);
3153 }
3154 
3155 /*3
3156 * converts a resolution into a list of modules
3157 */
3158 lists syConvRes(syStrategy syzstr,BOOLEAN toDel,int add_row_shift)
3159 {
3160  resolvente fullres = syzstr->fullres;
3161  resolvente minres = syzstr->minres;
3162 
3163  const int length = syzstr->length;
3164 
3165  if ((fullres==NULL) && (minres==NULL))
3166  {
3167  if (syzstr->hilb_coeffs==NULL)
3168  { // La Scala
3169  fullres = syReorder(syzstr->res, length, syzstr);
3170  }
3171  else
3172  { // HRES
3173  minres = syReorder(syzstr->orderedRes, length, syzstr);
3174  syKillEmptyEntres(minres, length);
3175  }
3176  }
3177 
3178  resolvente tr;
3179  int typ0=IDEAL_CMD;
3180 
3181  if (minres!=NULL)
3182  tr = minres;
3183  else
3184  tr = fullres;
3185 
3186  resolvente trueres=NULL;
3187  intvec ** w=NULL;
3188 
3189  if (length>0)
3190  {
3191  trueres = (resolvente)omAlloc0((length)*sizeof(ideal));
3192  for (int i=length-1;i>=0;i--)
3193  {
3194  if (tr[i]!=NULL)
3195  {
3196  trueres[i] = idCopy(tr[i]);
3197  }
3198  }
3199  if ( id_RankFreeModule(trueres[0], currRing) > 0)
3200  typ0 = MODUL_CMD;
3201  if (syzstr->weights!=NULL)
3202  {
3203  w = (intvec**)omAlloc0(length*sizeof(intvec*));
3204  for (int i=length-1;i>=0;i--)
3205  {
3206  if (syzstr->weights[i]!=NULL) w[i] = ivCopy(syzstr->weights[i]);
3207  }
3208  }
3209  }
3210 
3211  lists li = liMakeResolv(trueres, length, syzstr->list_length,typ0,
3212  w, add_row_shift);
3213 
3214  if (toDel)
3215  syKillComputation(syzstr);
3216  else
3217  {
3218  if( fullres != NULL && syzstr->fullres == NULL )
3219  syzstr->fullres = fullres;
3220 
3221  if( minres != NULL && syzstr->minres == NULL )
3222  syzstr->minres = minres;
3223  }
3224  return li;
3225 }
3226 
3227 /*3
3228 * converts a list of modules into a resolution
3229 */
3231 {
3232  int typ0;
3234 
3235  resolvente fr = liFindRes(li,&(result->length),&typ0,&(result->weights));
3236  if (fr != NULL)
3237  {
3238 
3239  result->fullres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3240  for (int i=result->length-1;i>=0;i--)
3241  {
3242  if (fr[i]!=NULL)
3243  result->fullres[i] = idCopy(fr[i]);
3244  }
3245  result->list_length=result->length;
3246  omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3247  }
3248  else
3249  {
3250  omFreeSize(result, sizeof(ssyStrategy));
3251  result = NULL;
3252  }
3253  return result;
3254 }
3255 
3256 /*3
3257 * converts a list of modules into a minimal resolution
3258 */
3260 {
3261  int typ0;
3263 
3264  resolvente fr = liFindRes(li,&(result->length),&typ0);
3265  result->minres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3266  for (int i=result->length-1;i>=0;i--)
3267  {
3268  if (fr[i]!=NULL)
3269  result->minres[i] = idCopy(fr[i]);
3270  }
3271  omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3272  return result;
3273 }
3274 // from weight.cc
3276 {
3277  ideal F=(ideal)id->Data();
3278  intvec * iv = new intvec(rVar(currRing));
3279  polyset s;
3280  int sl, n, i;
3281  int *x;
3282 
3283  res->data=(char *)iv;
3284  s = F->m;
3285  sl = IDELEMS(F) - 1;
3286  n = rVar(currRing);
3287  double wNsqr = (double)2.0 / (double)n;
3289  x = (int * )omAlloc(2 * (n + 1) * sizeof(int));
3290  wCall(s, sl, x, wNsqr, currRing);
3291  for (i = n; i!=0; i--)
3292  (*iv)[i-1] = x[i + n + 1];
3293  omFreeSize((ADDRESS)x, 2 * (n + 1) * sizeof(int));
3294  return FALSE;
3295 }
3298 {
3299  res->data=(char *)id_QHomWeight((ideal)v->Data(), currRing);
3300  if (res->data==NULL)
3301  res->data=(char *)new intvec(rVar(currRing));
3302  return FALSE;
3303 }
3304 /*==============================================================*/
3305 // from clapsing.cc
3306 #if 0
3307 BOOLEAN jjIS_SQR_FREE(leftv res, leftv u)
3308 {
3309  BOOLEAN b=singclap_factorize((poly)(u->CopyD()), &v, 0);
3310  res->data=(void *)b;
3311 }
3312 #endif
3315 {
3316  res->data=singclap_resultant((poly)u->CopyD(),(poly)v->CopyD(),
3317  (poly)w->CopyD(), currRing);
3318  return errorreported;
3319 }
3322 {
3323  res->data=singclap_irrCharSeries((ideal)u->Data(), currRing);
3324  return (res->data==NULL);
3325 }
3326 
3327 // from semic.cc
3328 #ifdef HAVE_SPECTRUM
3329 
3330 // ----------------------------------------------------------------------------
3331 // Initialize a spectrum deep from a singular lists
3332 // ----------------------------------------------------------------------------
3334 void copy_deep( spectrum& spec, lists l )
3335 {
3336  spec.mu = (int)(long)(l->m[0].Data( ));
3337  spec.pg = (int)(long)(l->m[1].Data( ));
3338  spec.n = (int)(long)(l->m[2].Data( ));
3339 
3340  spec.copy_new( spec.n );
3341 
3342  intvec *num = (intvec*)l->m[3].Data( );
3343  intvec *den = (intvec*)l->m[4].Data( );
3344  intvec *mul = (intvec*)l->m[5].Data( );
3345 
3346  for( int i=0; i<spec.n; i++ )
3347  {
3348  spec.s[i] = (Rational)((*num)[i])/(Rational)((*den)[i]);
3349  spec.w[i] = (*mul)[i];
3350  }
3351 }
3352 
3353 // ----------------------------------------------------------------------------
3354 // singular lists constructor for spectrum
3355 // ----------------------------------------------------------------------------
3356 
3357 spectrum /*former spectrum::spectrum ( lists l )*/
3359 {
3360  spectrum result;
3361  copy_deep( result, l );
3362  return result;
3363 }
3364 
3365 // ----------------------------------------------------------------------------
3366 // generate a Singular lists from a spectrum
3367 // ----------------------------------------------------------------------------
3368 
3369 /* former spectrum::thelist ( void )*/
3370 lists getList( spectrum& spec )
3371 {
3373 
3374  L->Init( 6 );
3375 
3376  intvec *num = new intvec( spec.n );
3377  intvec *den = new intvec( spec.n );
3378  intvec *mult = new intvec( spec.n );
3379 
3380  for( int i=0; i<spec.n; i++ )
3381  {
3382  (*num) [i] = spec.s[i].get_num_si( );
3383  (*den) [i] = spec.s[i].get_den_si( );
3384  (*mult)[i] = spec.w[i];
3385  }
3386 
3387  L->m[0].rtyp = INT_CMD; // milnor number
3388  L->m[1].rtyp = INT_CMD; // geometrical genus
3389  L->m[2].rtyp = INT_CMD; // # of spectrum numbers
3390  L->m[3].rtyp = INTVEC_CMD; // numerators
3391  L->m[4].rtyp = INTVEC_CMD; // denomiantors
3392  L->m[5].rtyp = INTVEC_CMD; // multiplicities
3393 
3394  L->m[0].data = (void*)(long)spec.mu;
3395  L->m[1].data = (void*)(long)spec.pg;
3396  L->m[2].data = (void*)(long)spec.n;
3397  L->m[3].data = (void*)num;
3398  L->m[4].data = (void*)den;
3399  L->m[5].data = (void*)mult;
3400 
3401  return L;
3402 }
3403 // from spectrum.cc
3404 // ----------------------------------------------------------------------------
3405 // print out an error message for a spectrum list
3406 // ----------------------------------------------------------------------------
3408 typedef enum
3439 
3440 } semicState;
3442 void list_error( semicState state )
3443 {
3444  switch( state )
3445  {
3446  case semicListTooShort:
3447  WerrorS( "the list is too short" );
3448  break;
3449  case semicListTooLong:
3450  WerrorS( "the list is too long" );
3451  break;
3452 
3454  WerrorS( "first element of the list should be int" );
3455  break;
3457  WerrorS( "second element of the list should be int" );
3458  break;
3460  WerrorS( "third element of the list should be int" );
3461  break;
3463  WerrorS( "fourth element of the list should be intvec" );
3464  break;
3466  WerrorS( "fifth element of the list should be intvec" );
3467  break;
3469  WerrorS( "sixth element of the list should be intvec" );
3470  break;
3471 
3472  case semicListNNegative:
3473  WerrorS( "first element of the list should be positive" );
3474  break;
3476  WerrorS( "wrong number of numerators" );
3477  break;
3479  WerrorS( "wrong number of denominators" );
3480  break;
3482  WerrorS( "wrong number of multiplicities" );
3483  break;
3484 
3485  case semicListMuNegative:
3486  WerrorS( "the Milnor number should be positive" );
3487  break;
3488  case semicListPgNegative:
3489  WerrorS( "the geometrical genus should be nonnegative" );
3490  break;
3491  case semicListNumNegative:
3492  WerrorS( "all numerators should be positive" );
3493  break;
3494  case semicListDenNegative:
3495  WerrorS( "all denominators should be positive" );
3496  break;
3497  case semicListMulNegative:
3498  WerrorS( "all multiplicities should be positive" );
3499  break;
3500 
3501  case semicListNotSymmetric:
3502  WerrorS( "it is not symmetric" );
3503  break;
3505  WerrorS( "it is not monotonous" );
3506  break;
3507 
3508  case semicListMilnorWrong:
3509  WerrorS( "the Milnor number is wrong" );
3510  break;
3511  case semicListPGWrong:
3512  WerrorS( "the geometrical genus is wrong" );
3513  break;
3514 
3515  default:
3516  WerrorS( "unspecific error" );
3517  break;
3518  }
3519 }
3520 // ----------------------------------------------------------------------------
3521 // this is the main spectrum computation function
3522 // ----------------------------------------------------------------------------
3524 enum spectrumState
3535 };
3536 
3537 // from splist.cc
3538 // ----------------------------------------------------------------------------
3539 // Compute the spectrum of a spectrumPolyList
3540 // ----------------------------------------------------------------------------
3541 
3542 /* former spectrumPolyList::spectrum ( lists*, int) */
3544 {
3545  spectrumPolyNode **node = &speclist.root;
3547 
3548  poly f,tmp;
3549  int found,cmp;
3550 
3551  Rational smax( ( fast==0 ? 0 : rVar(currRing) ),
3552  ( fast==2 ? 2 : 1 ) );
3553 
3554  Rational weight_prev( 0,1 );
3555 
3556  int mu = 0; // the milnor number
3557  int pg = 0; // the geometrical genus
3558  int n = 0; // number of different spectral numbers
3559  int z = 0; // number of spectral number equal to smax
3560 
3561  while( (*node)!=(spectrumPolyNode*)NULL &&
3562  ( fast==0 || (*node)->weight<=smax ) )
3563  {
3564  // ---------------------------------------
3565  // determine the first normal form which
3566  // contains the monomial node->mon
3567  // ---------------------------------------
3568 
3569  found = FALSE;
3570  search = *node;
3571 
3572  while( search!=(spectrumPolyNode*)NULL && found==FALSE )
3573  {
3574  if( search->nf!=(poly)NULL )
3575  {
3576  f = search->nf;
3577 
3578  do
3579  {
3580  // --------------------------------
3581  // look for (*node)->mon in f
3582  // --------------------------------
3583 
3584  cmp = pCmp( (*node)->mon,f );
3585 
3586  if( cmp<0 )
3587  {
3588  f = pNext( f );
3589  }
3590  else if( cmp==0 )
3591  {
3592  // -----------------------------
3593  // we have found a normal form
3594  // -----------------------------
3595 
3596  found = TRUE;
3597 
3598  // normalize coefficient
3599 
3600  number inv = nInvers( pGetCoeff( f ) );
3601  search->nf=__p_Mult_nn( search->nf,inv,currRing );
3602  nDelete( &inv );
3603 
3604  // exchange normal forms
3605 
3606  tmp = (*node)->nf;
3607  (*node)->nf = search->nf;
3608  search->nf = tmp;
3609  }
3610  }
3611  while( cmp<0 && f!=(poly)NULL );
3612  }
3613  search = search->next;
3614  }
3615 
3616  if( found==FALSE )
3617  {
3618  // ------------------------------------------------
3619  // the weight of node->mon is a spectrum number
3620  // ------------------------------------------------
3621 
3622  mu++;
3623 
3624  if( (*node)->weight<=(Rational)1 ) pg++;
3625  if( (*node)->weight==smax ) z++;
3626  if( (*node)->weight>weight_prev ) n++;
3627 
3628  weight_prev = (*node)->weight;
3629  node = &((*node)->next);
3630  }
3631  else
3632  {
3633  // -----------------------------------------------
3634  // determine all other normal form which contain
3635  // the monomial node->mon
3636  // replace for node->mon its normal form
3637  // -----------------------------------------------
3638 
3639  while( search!=(spectrumPolyNode*)NULL )
3640  {
3641  if( search->nf!=(poly)NULL )
3642  {
3643  f = search->nf;
3644 
3645  do
3646  {
3647  // --------------------------------
3648  // look for (*node)->mon in f
3649  // --------------------------------
3650 
3651  cmp = pCmp( (*node)->mon,f );
3652 
3653  if( cmp<0 )
3654  {
3655  f = pNext( f );
3656  }
3657  else if( cmp==0 )
3658  {
3659  search->nf = pSub( search->nf,
3660  __pp_Mult_nn( (*node)->nf,pGetCoeff( f ),currRing ) );
3661  pNorm( search->nf );
3662  }
3663  }
3664  while( cmp<0 && f!=(poly)NULL );
3665  }
3666  search = search->next;
3667  }
3668  speclist.delete_node( node );
3669  }
3670 
3671  }
3672 
3673  // --------------------------------------------------------
3674  // fast computation exploits the symmetry of the spectrum
3675  // --------------------------------------------------------
3676 
3677  if( fast==2 )
3678  {
3679  mu = 2*mu - z;
3680  n = ( z > 0 ? 2*n - 1 : 2*n );
3681  }
3682 
3683  // --------------------------------------------------------
3684  // compute the spectrum numbers with their multiplicities
3685  // --------------------------------------------------------
3686 
3687  intvec *nom = new intvec( n );
3688  intvec *den = new intvec( n );
3689  intvec *mult = new intvec( n );
3690 
3691  int count = 0;
3692  int multiplicity = 1;
3693 
3694  for( search=speclist.root; search!=(spectrumPolyNode*)NULL &&
3695  ( fast==0 || search->weight<=smax );
3696  search=search->next )
3697  {
3698  if( search->next==(spectrumPolyNode*)NULL ||
3699  search->weight<search->next->weight )
3700  {
3701  (*nom) [count] = search->weight.get_num_si( );
3702  (*den) [count] = search->weight.get_den_si( );
3703  (*mult)[count] = multiplicity;
3704 
3705  multiplicity=1;
3706  count++;
3707  }
3708  else
3709  {
3710  multiplicity++;
3711  }
3712  }
3713 
3714  // --------------------------------------------------------
3715  // fast computation exploits the symmetry of the spectrum
3716  // --------------------------------------------------------
3717 
3718  if( fast==2 )
3719  {
3720  int n1,n2;
3721  for( n1=0, n2=n-1; n1<n2; n1++, n2-- )
3722  {
3723  (*nom) [n2] = rVar(currRing)*(*den)[n1]-(*nom)[n1];
3724  (*den) [n2] = (*den)[n1];
3725  (*mult)[n2] = (*mult)[n1];
3726  }
3727  }
3728 
3729  // -----------------------------------
3730  // test if the spectrum is symmetric
3731  // -----------------------------------
3732 
3733  if( fast==0 || fast==1 )
3734  {
3735  int symmetric=TRUE;
3736 
3737  for( int n1=0, n2=n-1 ; n1<n2 && symmetric==TRUE; n1++, n2-- )
3738  {
3739  if( (*mult)[n1]!=(*mult)[n2] ||
3740  (*den) [n1]!= (*den)[n2] ||
3741  (*nom)[n1]+(*nom)[n2]!=rVar(currRing)*(*den) [n1] )
3742  {
3743  symmetric = FALSE;
3744  }
3745  }
3746 
3747  if( symmetric==FALSE )
3748  {
3749  // ---------------------------------------------
3750  // the spectrum is not symmetric => degenerate
3751  // principal part
3752  // ---------------------------------------------
3753 
3754  *L = (lists)omAllocBin( slists_bin);
3755  (*L)->Init( 1 );
3756  (*L)->m[0].rtyp = INT_CMD; // milnor number
3757  (*L)->m[0].data = (void*)(long)mu;
3758 
3759  return spectrumDegenerate;
3760  }
3761  }
3762 
3763  *L = (lists)omAllocBin( slists_bin);
3764 
3765  (*L)->Init( 6 );
3766 
3767  (*L)->m[0].rtyp = INT_CMD; // milnor number
3768  (*L)->m[1].rtyp = INT_CMD; // geometrical genus
3769  (*L)->m[2].rtyp = INT_CMD; // number of spectrum values
3770  (*L)->m[3].rtyp = INTVEC_CMD; // nominators
3771  (*L)->m[4].rtyp = INTVEC_CMD; // denomiantors
3772  (*L)->m[5].rtyp = INTVEC_CMD; // multiplicities
3773 
3774  (*L)->m[0].data = (void*)(long)mu;
3775  (*L)->m[1].data = (void*)(long)pg;
3776  (*L)->m[2].data = (void*)(long)n;
3777  (*L)->m[3].data = (void*)nom;
3778  (*L)->m[4].data = (void*)den;
3779  (*L)->m[5].data = (void*)mult;
3780 
3781  return spectrumOK;
3782 }
3784 spectrumState spectrumCompute( poly h,lists *L,int fast )
3785 {
3786  int i;
3787 
3788  #ifdef SPECTRUM_DEBUG
3789  #ifdef SPECTRUM_PRINT
3790  #ifdef SPECTRUM_IOSTREAM
3791  cout << "spectrumCompute\n";
3792  if( fast==0 ) cout << " no optimization" << endl;
3793  if( fast==1 ) cout << " weight optimization" << endl;
3794  if( fast==2 ) cout << " symmetry optimization" << endl;
3795  #else
3796  fputs( "spectrumCompute\n",stdout );
3797  if( fast==0 ) fputs( " no optimization\n", stdout );
3798  if( fast==1 ) fputs( " weight optimization\n", stdout );
3799  if( fast==2 ) fputs( " symmetry optimization\n", stdout );
3800  #endif
3801  #endif
3802  #endif
3803 
3804  // ----------------------
3805  // check if h is zero
3806  // ----------------------
3807 
3808  if( h==(poly)NULL )
3809  {
3810  return spectrumZero;
3811  }
3812 
3813  // ----------------------------------
3814  // check if h has a constant term
3815  // ----------------------------------
3816 
3817  if( hasConstTerm( h, currRing ) )
3818  {
3819  return spectrumBadPoly;
3820  }
3821 
3822  // --------------------------------
3823  // check if h has a linear term
3824  // --------------------------------
3825 
3826  if( hasLinearTerm( h, currRing ) )
3827  {
3828  *L = (lists)omAllocBin( slists_bin);
3829  (*L)->Init( 1 );
3830  (*L)->m[0].rtyp = INT_CMD; // milnor number
3831  /* (*L)->m[0].data = (void*)0;a -- done by Init */
3832 
3833  return spectrumNoSingularity;
3834  }
3835 
3836  // ----------------------------------
3837  // compute the jacobi ideal of (h)
3838  // ----------------------------------
3839 
3840  ideal J = NULL;
3841  J = idInit( rVar(currRing),1 );
3842 
3843  #ifdef SPECTRUM_DEBUG
3844  #ifdef SPECTRUM_PRINT
3845  #ifdef SPECTRUM_IOSTREAM
3846  cout << "\n computing the Jacobi ideal...\n";
3847  #else
3848  fputs( "\n computing the Jacobi ideal...\n",stdout );
3849  #endif
3850  #endif
3851  #endif
3852 
3853  for( i=0; i<rVar(currRing); i++ )
3854  {
3855  J->m[i] = pDiff( h,i+1); //j );
3856 
3857  #ifdef SPECTRUM_DEBUG
3858  #ifdef SPECTRUM_PRINT
3859  #ifdef SPECTRUM_IOSTREAM
3860  cout << " ";
3861  #else
3862  fputs(" ", stdout );
3863  #endif
3864  pWrite( J->m[i] );
3865  #endif
3866  #endif
3867  }
3868 
3869  // --------------------------------------------
3870  // compute a standard basis stdJ of jac(h)
3871  // --------------------------------------------
3872 
3873  #ifdef SPECTRUM_DEBUG
3874  #ifdef SPECTRUM_PRINT
3875  #ifdef SPECTRUM_IOSTREAM
3876  cout << endl;
3877  cout << " computing a standard basis..." << endl;
3878  #else
3879  fputs( "\n", stdout );
3880  fputs( " computing a standard basis...\n", stdout );
3881  #endif
3882  #endif
3883  #endif
3884 
3885  ideal stdJ = kStd(J,currRing->qideal,isNotHomog,NULL);
3886  idSkipZeroes( stdJ );
3887 
3888  #ifdef SPECTRUM_DEBUG
3889  #ifdef SPECTRUM_PRINT
3890  for( i=0; i<IDELEMS(stdJ); i++ )
3891  {
3892  #ifdef SPECTRUM_IOSTREAM
3893  cout << " ";
3894  #else
3895  fputs( " ",stdout );
3896  #endif
3897 
3898  pWrite( stdJ->m[i] );
3899  }
3900  #endif
3901  #endif
3902 
3903  idDelete( &J );
3904 
3905  // ------------------------------------------
3906  // check if the h has a singularity
3907  // ------------------------------------------
3908 
3909  if( hasOne( stdJ, currRing ) )
3910  {
3911  // -------------------------------
3912  // h is smooth in the origin
3913  // return only the Milnor number
3914  // -------------------------------
3915 
3916  *L = (lists)omAllocBin( slists_bin);
3917  (*L)->Init( 1 );
3918  (*L)->m[0].rtyp = INT_CMD; // milnor number
3919  /* (*L)->m[0].data = (void*)0;a -- done by Init */
3920 
3921  return spectrumNoSingularity;
3922  }
3923 
3924  // ------------------------------------------
3925  // check if the singularity h is isolated
3926  // ------------------------------------------
3927 
3928  for( i=rVar(currRing); i>0; i-- )
3929  {
3930  if( hasAxis( stdJ,i, currRing )==FALSE )
3931  {
3932  return spectrumNotIsolated;
3933  }
3934  }
3935 
3936  // ------------------------------------------
3937  // compute the highest corner hc of stdJ
3938  // ------------------------------------------
3939 
3940  #ifdef SPECTRUM_DEBUG
3941  #ifdef SPECTRUM_PRINT
3942  #ifdef SPECTRUM_IOSTREAM
3943  cout << "\n computing the highest corner...\n";
3944  #else
3945  fputs( "\n computing the highest corner...\n", stdout );
3946  #endif
3947  #endif
3948  #endif
3949 
3950  poly hc = (poly)NULL;
3951 
3952  scComputeHC( stdJ,currRing->qideal, 0,hc );
3953 
3954  if( hc!=(poly)NULL )
3955  {
3956  pGetCoeff(hc) = nInit(1);
3957 
3958  for( i=rVar(currRing); i>0; i-- )
3959  {
3960  if( pGetExp( hc,i )>0 ) pDecrExp( hc,i );
3961  }
3962  pSetm( hc );
3963  }
3964  else
3965  {
3966  return spectrumNoHC;
3967  }
3968 
3969  #ifdef SPECTRUM_DEBUG
3970  #ifdef SPECTRUM_PRINT
3971  #ifdef SPECTRUM_IOSTREAM
3972  cout << " ";
3973  #else
3974  fputs( " ", stdout );
3975  #endif
3976  pWrite( hc );
3977  #endif
3978  #endif
3979 
3980  // ----------------------------------------
3981  // compute the Newton polygon nph of h
3982  // ----------------------------------------
3983 
3984  #ifdef SPECTRUM_DEBUG
3985  #ifdef SPECTRUM_PRINT
3986  #ifdef SPECTRUM_IOSTREAM
3987  cout << "\n computing the newton polygon...\n";
3988  #else
3989  fputs( "\n computing the newton polygon...\n", stdout );
3990  #endif
3991  #endif
3992  #endif
3993 
3994  newtonPolygon nph( h, currRing );
3995 
3996  #ifdef SPECTRUM_DEBUG
3997  #ifdef SPECTRUM_PRINT
3998  cout << nph;
3999  #endif
4000  #endif
4001 
4002  // -----------------------------------------------
4003  // compute the weight corner wc of (stdj,nph)
4004  // -----------------------------------------------
4005 
4006  #ifdef SPECTRUM_DEBUG
4007  #ifdef SPECTRUM_PRINT
4008  #ifdef SPECTRUM_IOSTREAM
4009  cout << "\n computing the weight corner...\n";
4010  #else
4011  fputs( "\n computing the weight corner...\n", stdout );
4012  #endif
4013  #endif
4014  #endif
4015 
4016  poly wc = ( fast==0 ? pCopy( hc ) :
4017  ( fast==1 ? computeWC( nph,(Rational)rVar(currRing), currRing ) :
4018  /* fast==2 */computeWC( nph,
4019  ((Rational)rVar(currRing))/(Rational)2, currRing ) ) );
4020 
4021  #ifdef SPECTRUM_DEBUG
4022  #ifdef SPECTRUM_PRINT
4023  #ifdef SPECTRUM_IOSTREAM
4024  cout << " ";
4025  #else
4026  fputs( " ", stdout );
4027  #endif
4028  pWrite( wc );
4029  #endif
4030  #endif
4031 
4032  // -------------
4033  // compute NF
4034  // -------------
4035 
4036  #ifdef SPECTRUM_DEBUG
4037  #ifdef SPECTRUM_PRINT
4038  #ifdef SPECTRUM_IOSTREAM
4039  cout << "\n computing NF...\n" << endl;
4040  #else
4041  fputs( "\n computing NF...\n", stdout );
4042  #endif
4043  #endif
4044  #endif
4045 
4046  spectrumPolyList NF( &nph );
4047 
4048  computeNF( stdJ,hc,wc,&NF, currRing );
4049 
4050  #ifdef SPECTRUM_DEBUG
4051  #ifdef SPECTRUM_PRINT
4052  cout << NF;
4053  #ifdef SPECTRUM_IOSTREAM
4054  cout << endl;
4055  #else
4056  fputs( "\n", stdout );
4057  #endif
4058  #endif
4059  #endif
4060 
4061  // ----------------------------
4062  // compute the spectrum of h
4063  // ----------------------------
4064 // spectrumState spectrumStateFromList( spectrumPolyList& speclist, lists *L, int fast );
4065 
4066  return spectrumStateFromList(NF, L, fast );
4067 }
4068 
4069 // ----------------------------------------------------------------------------
4070 // this procedure is called from the interpreter
4071 // ----------------------------------------------------------------------------
4072 // first = polynomial
4073 // result = list of spectrum numbers
4074 // ----------------------------------------------------------------------------
4077 {
4078  switch( state )
4079  {
4080  case spectrumZero:
4081  WerrorS( "polynomial is zero" );
4082  break;
4083  case spectrumBadPoly:
4084  WerrorS( "polynomial has constant term" );
4085  break;
4086  case spectrumNoSingularity:
4087  WerrorS( "not a singularity" );
4088  break;
4089  case spectrumNotIsolated:
4090  WerrorS( "the singularity is not isolated" );
4091  break;
4092  case spectrumNoHC:
4093  WerrorS( "highest corner cannot be computed" );
4094  break;
4095  case spectrumDegenerate:
4096  WerrorS( "principal part is degenerate" );
4097  break;
4098  case spectrumOK:
4099  break;
4100 
4101  default:
4102  WerrorS( "unknown error occurred" );
4103  break;
4104  }
4105 }
4108 {
4109  spectrumState state = spectrumOK;
4110 
4111  // -------------------
4112  // check consistency
4113  // -------------------
4114 
4115  // check for a local ring
4116 
4117  if( !ringIsLocal(currRing ) )
4118  {
4119  WerrorS( "only works for local orderings" );
4120  state = spectrumWrongRing;
4121  }
4122 
4123  // no quotient rings are allowed
4124 
4125  else if( currRing->qideal != NULL )
4126  {
4127  WerrorS( "does not work in quotient rings" );
4128  state = spectrumWrongRing;
4129  }
4130  else
4131  {
4132  lists L = (lists)NULL;
4133  int flag = 1; // weight corner optimization is safe
4134 
4135  state = spectrumCompute( (poly)first->Data( ),&L,flag );
4136 
4137  if( state==spectrumOK )
4138  {
4139  result->rtyp = LIST_CMD;
4140  result->data = (char*)L;
4141  }
4142  else
4143  {
4144  spectrumPrintError(state);
4145  }
4146  }
4147 
4148  return (state!=spectrumOK);
4149 }
4150 
4151 // ----------------------------------------------------------------------------
4152 // this procedure is called from the interpreter
4153 // ----------------------------------------------------------------------------
4154 // first = polynomial
4155 // result = list of spectrum numbers
4156 // ----------------------------------------------------------------------------
4159 {
4160  spectrumState state = spectrumOK;
4161 
4162  // -------------------
4163  // check consistency
4164  // -------------------
4165 
4166  // check for a local polynomial ring
4167 
4168  if( currRing->OrdSgn != -1 )
4169  // ?? HS: the test above is also true for k[x][[y]], k[[x]][y]
4170  // or should we use:
4171  //if( !ringIsLocal( ) )
4172  {
4173  WerrorS( "only works for local orderings" );
4174  state = spectrumWrongRing;
4175  }
4176  else if( currRing->qideal != NULL )
4177  {
4178  WerrorS( "does not work in quotient rings" );
4179  state = spectrumWrongRing;
4180  }
4181  else
4182  {
4183  lists L = (lists)NULL;
4184  int flag = 2; // symmetric optimization
4185 
4186  state = spectrumCompute( (poly)first->Data( ),&L,flag );
4187 
4188  if( state==spectrumOK )
4189  {
4190  result->rtyp = LIST_CMD;
4191  result->data = (char*)L;
4192  }
4193  else
4194  {
4195  spectrumPrintError(state);
4196  }
4197  }
4198 
4199  return (state!=spectrumOK);
4200 }
4201 
4202 // ----------------------------------------------------------------------------
4203 // check if a list is a spectrum
4204 // check for:
4205 // list has 6 elements
4206 // 1st element is int (mu=Milnor number)
4207 // 2nd element is int (pg=geometrical genus)
4208 // 3rd element is int (n =number of different spectrum numbers)
4209 // 4th element is intvec (num=numerators)
4210 // 5th element is intvec (den=denomiantors)
4211 // 6th element is intvec (mul=multiplicities)
4212 // exactly n numerators
4213 // exactly n denominators
4214 // exactly n multiplicities
4215 // mu>0
4216 // pg>=0
4217 // n>0
4218 // num>0
4219 // den>0
4220 // mul>0
4221 // symmetriy with respect to numberofvariables/2
4222 // monotony
4223 // mu = sum of all multiplicities
4224 // pg = sum of all multiplicities where num/den<=1
4225 // ----------------------------------------------------------------------------
4228 {
4229  // -------------------
4230  // check list length
4231  // -------------------
4232 
4233  if( l->nr < 5 )
4234  {
4235  return semicListTooShort;
4236  }
4237  else if( l->nr > 5 )
4238  {
4239  return semicListTooLong;
4240  }
4241 
4242  // -------------
4243  // check types
4244  // -------------
4245 
4246  if( l->m[0].rtyp != INT_CMD )
4247  {
4249  }
4250  else if( l->m[1].rtyp != INT_CMD )
4251  {
4253  }
4254  else if( l->m[2].rtyp != INT_CMD )
4255  {
4257  }
4258  else if( l->m[3].rtyp != INTVEC_CMD )
4259  {
4261  }
4262  else if( l->m[4].rtyp != INTVEC_CMD )
4263  {
4265  }
4266  else if( l->m[5].rtyp != INTVEC_CMD )
4267  {
4269  }
4270 
4271  // -------------------------
4272  // check number of entries
4273  // -------------------------
4274 
4275  int mu = (int)(long)(l->m[0].Data( ));
4276  int pg = (int)(long)(l->m[1].Data( ));
4277  int n = (int)(long)(l->m[2].Data( ));
4278 
4279  if( n <= 0 )
4280  {
4281  return semicListNNegative;
4282  }
4283 
4284  intvec *num = (intvec*)l->m[3].Data( );
4285  intvec *den = (intvec*)l->m[4].Data( );
4286  intvec *mul = (intvec*)l->m[5].Data( );
4287 
4288  if( n != num->length( ) )
4289  {
4291  }
4292  else if( n != den->length( ) )
4293  {
4295  }
4296  else if( n != mul->length( ) )
4297  {
4299  }
4300 
4301  // --------
4302  // values
4303  // --------
4304 
4305  if( mu <= 0 )
4306  {
4307  return semicListMuNegative;
4308  }
4309  if( pg < 0 )
4310  {
4311  return semicListPgNegative;
4312  }
4313 
4314  int i;
4315 
4316  for( i=0; i<n; i++ )
4317  {
4318  if( (*num)[i] <= 0 )
4319  {
4320  return semicListNumNegative;
4321  }
4322  if( (*den)[i] <= 0 )
4323  {
4324  return semicListDenNegative;
4325  }
4326  if( (*mul)[i] <= 0 )
4327  {
4328  return semicListMulNegative;
4329  }
4330  }
4331 
4332  // ----------------
4333  // check symmetry
4334  // ----------------
4335 
4336  int j;
4337 
4338  for( i=0, j=n-1; i<=j; i++,j-- )
4339  {
4340  if( (*num)[i] != rVar(currRing)*((*den)[i]) - (*num)[j] ||
4341  (*den)[i] != (*den)[j] ||
4342  (*mul)[i] != (*mul)[j] )
4343  {
4344  return semicListNotSymmetric;
4345  }
4346  }
4347 
4348  // ----------------
4349  // check monotony
4350  // ----------------
4351 
4352  for( i=0, j=1; i<n/2; i++,j++ )
4353  {
4354  if( (*num)[i]*(*den)[j] >= (*num)[j]*(*den)[i] )
4355  {
4356  return semicListNotMonotonous;
4357  }
4358  }
4359 
4360  // ---------------------
4361  // check Milnor number
4362  // ---------------------
4363 
4364  for( mu=0, i=0; i<n; i++ )
4365  {
4366  mu += (*mul)[i];
4367  }
4368 
4369  if( mu != (int)(long)(l->m[0].Data( )) )
4370  {
4371  return semicListMilnorWrong;
4372  }
4373 
4374  // -------------------------
4375  // check geometrical genus
4376  // -------------------------
4377 
4378  for( pg=0, i=0; i<n; i++ )
4379  {
4380  if( (*num)[i]<=(*den)[i] )
4381  {
4382  pg += (*mul)[i];
4383  }
4384  }
4385 
4386  if( pg != (int)(long)(l->m[1].Data( )) )
4387  {
4388  return semicListPGWrong;
4389  }
4390 
4391  return semicOK;
4392 }
4393 
4394 // ----------------------------------------------------------------------------
4395 // this procedure is called from the interpreter
4396 // ----------------------------------------------------------------------------
4397 // first = list of spectrum numbers
4398 // second = list of spectrum numbers
4399 // result = sum of the two lists
4400 // ----------------------------------------------------------------------------
4402 BOOLEAN spaddProc( leftv result,leftv first,leftv second )
4403 {
4404  semicState state;
4405 
4406  // -----------------
4407  // check arguments
4408  // -----------------
4409 
4410  lists l1 = (lists)first->Data( );
4411  lists l2 = (lists)second->Data( );
4412 
4413  if( (state=list_is_spectrum( l1 )) != semicOK )
4414  {
4415  WerrorS( "first argument is not a spectrum:" );
4416  list_error( state );
4417  }
4418  else if( (state=list_is_spectrum( l2 )) != semicOK )
4419  {
4420  WerrorS( "second argument is not a spectrum:" );
4421  list_error( state );
4422  }
4423  else
4424  {
4425  spectrum s1= spectrumFromList ( l1 );
4426  spectrum s2= spectrumFromList ( l2 );
4427  spectrum sum( s1+s2 );
4428 
4429  result->rtyp = LIST_CMD;
4430  result->data = (char*)(getList(sum));
4431  }
4432 
4433  return (state!=semicOK);
4434 }
4435 
4436 // ----------------------------------------------------------------------------
4437 // this procedure is called from the interpreter
4438 // ----------------------------------------------------------------------------
4439 // first = list of spectrum numbers
4440 // second = integer
4441 // result = the multiple of the first list by the second factor
4442 // ----------------------------------------------------------------------------
4444 BOOLEAN spmulProc( leftv result,leftv first,leftv second )
4445 {
4446  semicState state;
4447 
4448  // -----------------
4449  // check arguments
4450  // -----------------
4451 
4452  lists l = (lists)first->Data( );
4453  int k = (int)(long)second->Data( );
4454 
4455  if( (state=list_is_spectrum( l ))!=semicOK )
4456  {
4457  WerrorS( "first argument is not a spectrum" );
4458  list_error( state );
4459  }
4460  else if( k < 0 )
4461  {
4462  WerrorS( "second argument should be positive" );
4463  state = semicMulNegative;
4464  }
4465  else
4466  {
4468  spectrum product( k*s );
4469 
4470  result->rtyp = LIST_CMD;
4471  result->data = (char*)getList(product);
4472  }
4473 
4474  return (state!=semicOK);
4475 }
4476 
4477 // ----------------------------------------------------------------------------
4478 // this procedure is called from the interpreter
4479 // ----------------------------------------------------------------------------
4480 // first = list of spectrum numbers
4481 // second = list of spectrum numbers
4482 // result = semicontinuity index
4483 // ----------------------------------------------------------------------------
4486 {
4487  semicState state;
4488  BOOLEAN qh=(((int)(long)w->Data())==1);
4489 
4490  // -----------------
4491  // check arguments
4492  // -----------------
4493 
4494  lists l1 = (lists)u->Data( );
4495  lists l2 = (lists)v->Data( );
4496 
4497  if( (state=list_is_spectrum( l1 ))!=semicOK )
4498  {
4499  WerrorS( "first argument is not a spectrum" );
4500  list_error( state );
4501  }
4502  else if( (state=list_is_spectrum( l2 ))!=semicOK )
4503  {
4504  WerrorS( "second argument is not a spectrum" );
4505  list_error( state );
4506  }
4507  else
4508  {
4509  spectrum s1= spectrumFromList( l1 );
4510  spectrum s2= spectrumFromList( l2 );
4511 
4512  res->rtyp = INT_CMD;
4513  if (qh)
4514  res->data = (void*)(long)(s1.mult_spectrumh( s2 ));
4515  else
4516  res->data = (void*)(long)(s1.mult_spectrum( s2 ));
4517  }
4518 
4519  // -----------------
4520  // check status
4521  // -----------------
4522 
4523  return (state!=semicOK);
4526 {
4527  sleftv tmp;
4528  memset(&tmp,0,sizeof(tmp));
4529  tmp.rtyp=INT_CMD;
4530  /* tmp.data = (void *)0; -- done by memset */
4531 
4532  return semicProc3(res,u,v,&tmp);
4533 }
4534 
4535 #endif
4537 BOOLEAN loNewtonP( leftv res, leftv arg1 )
4538 {
4539  res->data= (void*)loNewtonPolytope( (ideal)arg1->Data() );
4540  return FALSE;
4541 }
4543 BOOLEAN loSimplex( leftv res, leftv args )
4544 {
4545  if ( !(rField_is_long_R(currRing)) )
4546  {
4547  WerrorS("Ground field not implemented!");
4548  return TRUE;
4549  }
4550 
4551  simplex * LP;
4552  matrix m;
4553 
4554  leftv v= args;
4555  if ( v->Typ() != MATRIX_CMD ) // 1: matrix
4556  return TRUE;
4557  else
4558  m= (matrix)(v->CopyD());
4559 
4560  LP = new simplex(MATROWS(m),MATCOLS(m));
4561  LP->mapFromMatrix(m);
4562 
4563  v= v->next;
4564  if ( v->Typ() != INT_CMD ) // 2: m = number of constraints
4565  return TRUE;
4566  else
4567  LP->m= (int)(long)(v->Data());
4568 
4569  v= v->next;
4570  if ( v->Typ() != INT_CMD ) // 3: n = number of variables
4571  return TRUE;
4572  else
4573  LP->n= (int)(long)(v->Data());
4574 
4575  v= v->next;
4576  if ( v->Typ() != INT_CMD ) // 4: m1 = number of <= constraints
4577  return TRUE;
4578  else
4579  LP->m1= (int)(long)(v->Data());
4580 
4581  v= v->next;
4582  if ( v->Typ() != INT_CMD ) // 5: m2 = number of >= constraints
4583  return TRUE;
4584  else
4585  LP->m2= (int)(long)(v->Data());
4586 
4587  v= v->next;
4588  if ( v->Typ() != INT_CMD ) // 6: m3 = number of == constraints
4589  return TRUE;
4590  else
4591  LP->m3= (int)(long)(v->Data());
4592 
4593 #ifdef mprDEBUG_PROT
4594  Print("m (constraints) %d\n",LP->m);
4595  Print("n (columns) %d\n",LP->n);
4596  Print("m1 (<=) %d\n",LP->m1);
4597  Print("m2 (>=) %d\n",LP->m2);
4598  Print("m3 (==) %d\n",LP->m3);
4599 #endif
4600 
4601  LP->compute();
4602 
4603  lists lres= (lists)omAlloc( sizeof(slists) );
4604  lres->Init( 6 );
4605 
4606  lres->m[0].rtyp= MATRIX_CMD; // output matrix
4607  lres->m[0].data=(void*)LP->mapToMatrix(m);
4608 
4609  lres->m[1].rtyp= INT_CMD; // found a solution?
4610  lres->m[1].data=(void*)(long)LP->icase;
4611 
4612  lres->m[2].rtyp= INTVEC_CMD;
4613  lres->m[2].data=(void*)LP->posvToIV();
4614 
4615  lres->m[3].rtyp= INTVEC_CMD;
4616  lres->m[3].data=(void*)LP->zrovToIV();
4617 
4618  lres->m[4].rtyp= INT_CMD;
4619  lres->m[4].data=(void*)(long)LP->m;
4620 
4621  lres->m[5].rtyp= INT_CMD;
4622  lres->m[5].data=(void*)(long)LP->n;
4623 
4624  res->data= (void*)lres;
4625 
4626  return FALSE;
4627 }
4629 BOOLEAN nuMPResMat( leftv res, leftv arg1, leftv arg2 )
4630 {
4631  ideal gls = (ideal)(arg1->Data());
4632  int imtype= (int)(long)arg2->Data();
4633 
4634  uResultant::resMatType mtype= determineMType( imtype );
4635 
4636  // check input ideal ( = polynomial system )
4637  if ( mprIdealCheck( gls, arg1->Name(), mtype, true ) != mprOk )
4638  {
4639  return TRUE;
4640  }
4641 
4642  uResultant *resMat= new uResultant( gls, mtype, false );
4643  if (resMat!=NULL)
4644  {
4645  res->rtyp = MODUL_CMD;
4646  res->data= (void*)resMat->accessResMat()->getMatrix();
4647  if (!errorreported) delete resMat;
4648  }
4649  return errorreported;
4650 }
4652 BOOLEAN nuLagSolve( leftv res, leftv arg1, leftv arg2, leftv arg3 )
4653 {
4654 
4655  poly gls;
4656  gls= (poly)(arg1->Data());
4657  int howclean= (int)(long)arg3->Data();
4658 
4659  if ( !(rField_is_R(currRing) ||
4660  rField_is_Q(currRing) ||
4663  {
4664  WerrorS("Ground field not implemented!");
4665  return TRUE;
4666  }
4667 
4670  {
4671  unsigned long int ii = (unsigned long int)arg2->Data();
4672  setGMPFloatDigits( ii, ii );
4673  }
4674 
4675  if ( gls == NULL || pIsConstant( gls ) )
4676  {
4677  WerrorS("Input polynomial is constant!");
4678  return TRUE;
4679  }
4680 
4681  int ldummy;
4682  int deg= currRing->pLDeg( gls, &ldummy, currRing );
4683  int i,vpos=0;
4684  poly piter;
4685  lists elist;
4686  lists rlist;
4687 
4688  elist= (lists)omAlloc( sizeof(slists) );
4689  elist->Init( 0 );
4690 
4691  if ( rVar(currRing) > 1 )
4692  {
4693  piter= gls;
4694  for ( i= 1; i <= rVar(currRing); i++ )
4695  if ( pGetExp( piter, i ) )
4696  {
4697  vpos= i;
4698  break;
4699  }
4700  while ( piter )
4701  {
4702  for ( i= 1; i <= rVar(currRing); i++ )
4703  if ( (vpos != i) && (pGetExp( piter, i ) != 0) )
4704  {
4705  WerrorS("The input polynomial must be univariate!");
4706  return TRUE;
4707  }
4708  pIter( piter );
4709  }
4710  }
4711 
4712  rootContainer * roots= new rootContainer();
4713  number * pcoeffs= (number *)omAlloc( (deg+1) * sizeof( number ) );
4714  piter= gls;
4715  for ( i= deg; i >= 0; i-- )
4716  {
4717  if ( piter && pTotaldegree(piter) == i )
4718  {
4719  pcoeffs[i]= nCopy( pGetCoeff( piter ) );
4720  //nPrint( pcoeffs[i] );PrintS(" ");
4721  pIter( piter );
4722  }
4723  else
4724  {
4725  pcoeffs[i]= nInit(0);
4726  }
4727  }
4728 
4729 #ifdef mprDEBUG_PROT
4730  for (i=deg; i >= 0; i--)
4731  {
4732  nPrint( pcoeffs[i] );PrintS(" ");
4733  }
4734  PrintLn();
4735 #endif
4736 
4737  roots->fillContainer( pcoeffs, NULL, 1, deg, rootContainer::onepoly, 1 );
4738  roots->solver( howclean );
4739 
4740  int elem= roots->getAnzRoots();
4741  char *dummy;
4742  int j;
4743 
4744  rlist= (lists)omAlloc( sizeof(slists) );
4745  rlist->Init( elem );
4746 
4748  {
4749  for ( j= 0; j < elem; j++ )
4750  {
4751  rlist->m[j].rtyp=NUMBER_CMD;
4752  rlist->m[j].data=(void *)nCopy((number)(roots->getRoot(j)));
4753  //rlist->m[j].data=(void *)(number)(roots->getRoot(j));
4754  }
4755  }
4756  else
4757  {
4758  for ( j= 0; j < elem; j++ )
4759  {
4760  dummy = complexToStr( (*roots)[j], gmp_output_digits, currRing->cf );
4761  rlist->m[j].rtyp=STRING_CMD;
4762  rlist->m[j].data=(void *)dummy;
4763  }
4764  }
4765 
4766  elist->Clean();
4767  //omFreeSize( (ADDRESS) elist, sizeof(slists) );
4768 
4769  // this is (via fillContainer) the same data as in root
4770  //for ( i= deg; i >= 0; i-- ) nDelete( &pcoeffs[i] );
4771  //omFreeSize( (ADDRESS) pcoeffs, (deg+1) * sizeof( number ) );
4772 
4773  delete roots;
4774 
4775  res->rtyp= LIST_CMD;
4776  res->data= (void*)rlist;
4777 
4778  return FALSE;
4779 }
4781 BOOLEAN nuVanderSys( leftv res, leftv arg1, leftv arg2, leftv arg3)
4782 {
4783  int i;
4784  ideal p,w;
4785  p= (ideal)arg1->Data();
4786  w= (ideal)arg2->Data();
4787 
4788  // w[0] = f(p^0)
4789  // w[1] = f(p^1)
4790  // ...
4791  // p can be a vector of numbers (multivariate polynom)
4792  // or one number (univariate polynom)
4793  // tdg = deg(f)
4794 
4795  int n= IDELEMS( p );
4796  int m= IDELEMS( w );
4797  int tdg= (int)(long)arg3->Data();
4798 
4799  res->data= (void*)NULL;
4800 
4801  // check the input
4802  if ( tdg < 1 )
4803  {
4804  WerrorS("Last input parameter must be > 0!");
4805  return TRUE;
4806  }
4807  if ( n != rVar(currRing) )
4808  {
4809  Werror("Size of first input ideal must be equal to %d!",rVar(currRing));
4810  return TRUE;
4811  }
4812  if ( m != (int)pow((double)tdg+1,(double)n) )
4813  {
4814  Werror("Size of second input ideal must be equal to %d!",
4815  (int)pow((double)tdg+1,(double)n));
4816  return TRUE;
4817  }
4818  if ( !(rField_is_Q(currRing) /* ||
4819  rField_is_R() || rField_is_long_R() ||
4820  rField_is_long_C()*/ ) )
4821  {
4822  WerrorS("Ground field not implemented!");
4823  return TRUE;
4824  }
4825 
4826  number tmp;
4827  number *pevpoint= (number *)omAlloc( n * sizeof( number ) );
4828  for ( i= 0; i < n; i++ )
4829  {
4830  pevpoint[i]=nInit(0);
4831  if ( (p->m)[i] )
4832  {
4833  tmp = pGetCoeff( (p->m)[i] );
4834  if ( nIsZero(tmp) || nIsOne(tmp) || nIsMOne(tmp) )
4835  {
4836  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4837  WerrorS("Elements of first input ideal must not be equal to -1, 0, 1!");
4838  return TRUE;
4839  }
4840  } else tmp= NULL;
4841  if ( !nIsZero(tmp) )
4842  {
4843  if ( !pIsConstant((p->m)[i]))
4844  {
4845  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4846  WerrorS("Elements of first input ideal must be numbers!");
4847  return TRUE;
4848  }
4849  pevpoint[i]= nCopy( tmp );
4850  }
4851  }
4852 
4853  number *wresults= (number *)omAlloc( m * sizeof( number ) );
4854  for ( i= 0; i < m; i++ )
4855  {
4856  wresults[i]= nInit(0);
4857  if ( (w->m)[i] && !nIsZero(pGetCoeff((w->m)[i])) )
4858  {
4859  if ( !pIsConstant((w->m)[i]))
4860  {
4861  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4862  omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
4863  WerrorS("Elements of second input ideal must be numbers!");
4864  return TRUE;
4865  }
4866  wresults[i]= nCopy(pGetCoeff((w->m)[i]));
4867  }
4868  }
4869 
4870  vandermonde vm( m, n, tdg, pevpoint, FALSE );
4871  number *ncpoly= vm.interpolateDense( wresults );
4872  // do not free ncpoly[]!!
4873  poly rpoly= vm.numvec2poly( ncpoly );
4874 
4875  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4876  omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
4877 
4878  res->data= (void*)rpoly;
4879  return FALSE;
4880 }
4883 {
4884  leftv v= args;
4885 
4886  ideal gls;
4887  int imtype;
4888  int howclean;
4889 
4890  // get ideal
4891  if ( v->Typ() != IDEAL_CMD )
4892  return TRUE;
4893  else gls= (ideal)(v->Data());
4894  v= v->next;
4895 
4896  // get resultant matrix type to use (0,1)
4897  if ( v->Typ() != INT_CMD )
4898  return TRUE;
4899  else imtype= (int)(long)v->Data();
4900  v= v->next;
4901 
4902  if (imtype==0)
4903  {
4904  ideal test_id=idInit(1,1);
4905  int j;
4906  for(j=IDELEMS(gls)-1;j>=0;j--)
4907  {
4908  if (gls->m[j]!=NULL)
4909  {
4910  test_id->m[0]=gls->m[j];
4911  intvec *dummy_w=id_QHomWeight(test_id, currRing);
4912  if (dummy_w!=NULL)
4913  {
4914  WerrorS("Newton polytope not of expected dimension");
4915  delete dummy_w;
4916  return TRUE;
4917  }
4918  }
4919  }
4920  }
4921 
4922  // get and set precision in digits ( > 0 )
4923  if ( v->Typ() != INT_CMD )
4924  return TRUE;
4925  else if ( !(rField_is_R(currRing) || rField_is_long_R(currRing) || \
4927  {
4928  unsigned long int ii=(unsigned long int)v->Data();
4929  setGMPFloatDigits( ii, ii );
4930  }
4931  v= v->next;
4932 
4933  // get interpolation steps (0,1,2)
4934  if ( v->Typ() != INT_CMD )
4935  return TRUE;
4936  else howclean= (int)(long)v->Data();
4937 
4938  uResultant::resMatType mtype= determineMType( imtype );
4939  int i,count;
4940  lists listofroots= NULL;
4941  number smv= NULL;
4942  BOOLEAN interpolate_det= (mtype==uResultant::denseResMat)?TRUE:FALSE;
4943 
4944  //emptylist= (lists)omAlloc( sizeof(slists) );
4945  //emptylist->Init( 0 );
4946 
4947  //res->rtyp = LIST_CMD;
4948  //res->data= (void *)emptylist;
4949 
4950  // check input ideal ( = polynomial system )
4951  if ( mprIdealCheck( gls, args->Name(), mtype ) != mprOk )
4952  {
4953  return TRUE;
4954  }
4955 
4956  uResultant * ures;
4957  rootContainer ** iproots;
4958  rootContainer ** muiproots;
4959  rootArranger * arranger;
4960 
4961  // main task 1: setup of resultant matrix
4962  ures= new uResultant( gls, mtype );
4963  if ( ures->accessResMat()->initState() != resMatrixBase::ready )
4964  {
4965  WerrorS("Error occurred during matrix setup!");
4966  return TRUE;
4967  }
4968 
4969  // if dense resultant, check if minor nonsingular
4970  if ( mtype == uResultant::denseResMat )
4971  {
4972  smv= ures->accessResMat()->getSubDet();
4973 #ifdef mprDEBUG_PROT
4974  PrintS("// Determinant of submatrix: ");nPrint(smv);PrintLn();
4975 #endif
4976  if ( nIsZero(smv) )
4977  {
4978  WerrorS("Unsuitable input ideal: Minor of resultant matrix is singular!");
4979  return TRUE;
4980  }
4981  }
4982 
4983  // main task 2: Interpolate specialized resultant polynomials
4984  if ( interpolate_det )
4985  iproots= ures->interpolateDenseSP( false, smv );
4986  else
4987  iproots= ures->specializeInU( false, smv );
4988 
4989  // main task 3: Interpolate specialized resultant polynomials
4990  if ( interpolate_det )
4991  muiproots= ures->interpolateDenseSP( true, smv );
4992  else
4993  muiproots= ures->specializeInU( true, smv );
4994 
4995 #ifdef mprDEBUG_PROT
4996  int c= iproots[0]->getAnzElems();
4997  for (i=0; i < c; i++) pWrite(iproots[i]->getPoly());
4998  c= muiproots[0]->getAnzElems();
4999  for (i=0; i < c; i++) pWrite(muiproots[i]->getPoly());
5000 #endif
5001 
5002  // main task 4: Compute roots of specialized polys and match them up
5003  arranger= new rootArranger( iproots, muiproots, howclean );
5004  arranger->solve_all();
5005 
5006  // get list of roots
5007  if ( arranger->success() )
5008  {
5009  arranger->arrange();
5010  listofroots= listOfRoots(arranger, gmp_output_digits );
5011  }
5012  else
5013  {
5014  WerrorS("Solver was unable to find any roots!");
5015  return TRUE;
5016  }
5017 
5018  // free everything
5019  count= iproots[0]->getAnzElems();
5020  for (i=0; i < count; i++) delete iproots[i];
5021  omFreeSize( (ADDRESS) iproots, count * sizeof(rootContainer*) );
5022  count= muiproots[0]->getAnzElems();
5023  for (i=0; i < count; i++) delete muiproots[i];
5024  omFreeSize( (ADDRESS) muiproots, count * sizeof(rootContainer*) );
5025 
5026  delete ures;
5027  delete arranger;
5028  nDelete( &smv );
5029 
5030  res->data= (void *)listofroots;
5031 
5032  //emptylist->Clean();
5033  // omFreeSize( (ADDRESS) emptylist, sizeof(slists) );
5034 
5035  return FALSE;
5036 }
5037 
5038 // from mpr_numeric.cc
5039 lists listOfRoots( rootArranger* self, const unsigned int oprec )
5040 {
5041  int i,j;
5042  int count= self->roots[0]->getAnzRoots(); // number of roots
5043  int elem= self->roots[0]->getAnzElems(); // number of koordinates per root
5044 
5045  lists listofroots= (lists)omAlloc( sizeof(slists) ); // must be done this way!
5046 
5047  if ( self->found_roots )
5048  {
5049  listofroots->Init( count );
5050 
5051  for (i=0; i < count; i++)
5052  {
5053  lists onepoint= (lists)omAlloc(sizeof(slists)); // must be done this way!
5054  onepoint->Init(elem);
5055  for ( j= 0; j < elem; j++ )
5056  {
5057  if ( !rField_is_long_C(currRing) )
5058  {
5059  onepoint->m[j].rtyp=STRING_CMD;
5060  onepoint->m[j].data=(void *)complexToStr((*self->roots[j])[i],oprec, currRing->cf);
5061  }
5062  else
5063  {
5064  onepoint->m[j].rtyp=NUMBER_CMD;
5065  onepoint->m[j].data=(void *)n_Copy((number)(self->roots[j]->getRoot(i)), currRing->cf);
5066  }
5067  onepoint->m[j].next= NULL;
5068  onepoint->m[j].name= NULL;
5069  }
5070  listofroots->m[i].rtyp=LIST_CMD;
5071  listofroots->m[i].data=(void *)onepoint;
5072  listofroots->m[j].next= NULL;
5073  listofroots->m[j].name= NULL;
5074  }
5075 
5076  }
5077  else
5078  {
5079  listofroots->Init( 0 );
5080  }
5081 
5082  return listofroots;
5083 }
5084 
5085 // from ring.cc
5086 void rSetHdl(idhdl h)
5087 {
5088  ring rg = NULL;
5089  if (h!=NULL)
5090  {
5091 // Print(" new ring:%s (l:%d)\n",IDID(h),IDLEV(h));
5092  rg = IDRING(h);
5093  if (rg==NULL) return; //id <>NULL, ring==NULL
5094  omCheckAddrSize((ADDRESS)h,sizeof(idrec));
5095  if (IDID(h)) // OB: ????
5097  rTest(rg);
5098  }
5099  else return;
5100 
5101  // clean up history
5102  if (currRing!=NULL)
5103  {
5105  {
5107  //memset(&sLastPrinted,0,sizeof(sleftv)); // done by Cleanup,Init
5108  }
5109 
5110  if (rg!=currRing)/*&&(currRing!=NULL)*/
5111  {
5112  if (rg->cf!=currRing->cf)
5113  {
5115  if (DENOMINATOR_LIST!=NULL)
5116  {
5117  if (TEST_V_ALLWARN)
5118  Warn("deleting denom_list for ring change to %s",IDID(h));
5119  do
5120  {
5121  n_Delete(&(dd->n),currRing->cf);
5122  dd=dd->next;
5124  DENOMINATOR_LIST=dd;
5125  } while(DENOMINATOR_LIST!=NULL);
5126  }
5127  }
5128  }
5129  }
5130 
5131  // test for valid "currRing":
5132  if ((rg!=NULL) && (rg->idroot==NULL))
5133  {
5134  ring old=rg;
5135  rg=rAssure_HasComp(rg);
5136  if (old!=rg)
5137  {
5138  rKill(old);
5139  IDRING(h)=rg;
5140  }
5141  }
5142  /*------------ change the global ring -----------------------*/
5143  rChangeCurrRing(rg);
5144  currRingHdl = h;
5145 }
5147 static leftv rOptimizeOrdAsSleftv(leftv ord)
5148 {
5149  // change some bad orderings/combination into better ones
5150  leftv h=ord;
5151  while(h!=NULL)
5152  {
5153  BOOLEAN change=FALSE;
5154  intvec *iv = (intvec *)(h->data);
5155  // ws(-i) -> wp(i)
5156  if ((*iv)[1]==ringorder_ws)
5157  {
5158  BOOLEAN neg=TRUE;
5159  for(int i=2;i<iv->length();i++)
5160  if((*iv)[i]>=0) { neg=FALSE; break; }
5161  if (neg)
5162  {
5163  (*iv)[1]=ringorder_wp;
5164  for(int i=2;i<iv->length();i++)
5165  (*iv)[i]= - (*iv)[i];
5166  change=TRUE;
5167  }
5168  }
5169  // Ws(-i) -> Wp(i)
5170  if ((*iv)[1]==ringorder_Ws)
5171  {
5172  BOOLEAN neg=TRUE;
5173  for(int i=2;i<iv->length();i++)
5174  if((*iv)[i]>=0) { neg=FALSE; break; }
5175  if (neg)
5176  {
5177  (*iv)[1]=ringorder_Wp;
5178  for(int i=2;i<iv->length();i++)
5179  (*iv)[i]= -(*iv)[i];
5180  change=TRUE;
5181  }
5182  }
5183  // wp(1) -> dp
5184  if ((*iv)[1]==ringorder_wp)
5185  {
5186  BOOLEAN all_one=TRUE;
5187  for(int i=2;i<iv->length();i++)
5188  if((*iv)[i]!=1) { all_one=FALSE; break; }
5189  if (all_one)
5190  {
5191  intvec *iv2=new intvec(3);
5192  (*iv2)[0]=1;
5193  (*iv2)[1]=ringorder_dp;
5194  (*iv2)[2]=iv->length()-2;
5195  delete iv;
5196  iv=iv2;
5197  h->data=iv2;
5198  change=TRUE;
5199  }
5200  }
5201  // Wp(1) -> Dp
5202  if ((*iv)[1]==ringorder_Wp)
5203  {
5204  BOOLEAN all_one=TRUE;
5205  for(int i=2;i<iv->length();i++)
5206  if((*iv)[i]!=1) { all_one=FALSE; break; }
5207  if (all_one)
5208  {
5209  intvec *iv2=new intvec(3);
5210  (*iv2)[0]=1;
5211  (*iv2)[1]=ringorder_Dp;
5212  (*iv2)[2]=iv->length()-2;
5213  delete iv;
5214  iv=iv2;
5215  h->data=iv2;
5216  change=TRUE;
5217  }
5218  }
5219  // dp(1)/Dp(1)/rp(1) -> lp(1)
5220  if (((*iv)[1]==ringorder_dp)
5221  || ((*iv)[1]==ringorder_Dp)
5222  || ((*iv)[1]==ringorder_rp))
5223  {
5224  if (iv->length()==3)
5225  {
5226  if ((*iv)[2]==1)
5227  {
5228  (*iv)[1]=ringorder_lp;
5229  change=TRUE;
5230  }
5231  }
5232  }
5233  // lp(i),lp(j) -> lp(i+j)
5234  if(((*iv)[1]==ringorder_lp)
5235  && (h->next!=NULL))
5236  {
5237  intvec *iv2 = (intvec *)(h->next->data);
5238  if ((*iv2)[1]==ringorder_lp)
5239  {
5240  leftv hh=h->next;
5241  h->next=hh->next;
5242  hh->next=NULL;
5243  if ((*iv2)[0]==1)
5244  (*iv)[2] += 1; // last block unspecified, at least 1
5245  else
5246  (*iv)[2] += (*iv2)[2];
5247  hh->CleanUp();
5248  omFree(hh);
5249  change=TRUE;
5250  }
5251  }
5252  // -------------------
5253  if (!change) h=h->next;
5254  }
5255  return ord;
5256 }
5257 
5260 {
5261  int last = 0, o=0, n = 1, i=0, typ = 1, j;
5262  ord=rOptimizeOrdAsSleftv(ord);
5263  sleftv *sl = ord;
5264 
5265  // determine nBlocks
5266  while (sl!=NULL)
5267  {
5268  intvec *iv = (intvec *)(sl->data);
5269  if (((*iv)[1]==ringorder_c)||((*iv)[1]==ringorder_C))
5270  i++;
5271  else if ((*iv)[1]==ringorder_L)
5272  {
5273  R->bitmask=(*iv)[2]*2+1;
5274  n--;
5275  }
5276  else if (((*iv)[1]!=ringorder_a)
5277  && ((*iv)[1]!=ringorder_a64)
5278  && ((*iv)[1]!=ringorder_am))
5279  o++;
5280  n++;
5281  sl=sl->next;
5282  }
5283  // check whether at least one real ordering
5284  if (o==0)
5285  {
5286  WerrorS("invalid combination of orderings");
5287  return TRUE;
5288  }
5289  // if no c/C ordering is given, increment n
5290  if (i==0) n++;
5291  else if (i != 1)
5292  {
5293  // throw error if more than one is given
5294  WerrorS("more than one ordering c/C specified");
5295  return TRUE;
5296  }
5297 
5298  // initialize fields of R
5299  R->order=(rRingOrder_t *)omAlloc0(n*sizeof(rRingOrder_t));
5300  R->block0=(int *)omAlloc0(n*sizeof(int));
5301  R->block1=(int *)omAlloc0(n*sizeof(int));
5302  R->wvhdl=(int**)omAlloc0(n*sizeof(int_ptr));
5303 
5304  int *weights=(int*)omAlloc0((R->N+1)*sizeof(int));
5305 
5306  // init order, so that rBlocks works correctly
5307  for (j=0; j < n-1; j++)
5308  R->order[j] = ringorder_unspec;
5309  // set last _C order, if no c/C order was given
5310  if (i == 0) R->order[n-2] = ringorder_C;
5311 
5312  /* init orders */
5313  sl=ord;
5314  n=-1;
5315  while (sl!=NULL)
5316  {
5317  intvec *iv;
5318  iv = (intvec *)(sl->data);
5319  if ((*iv)[1]!=ringorder_L)
5320  {
5321  n++;
5322 
5323  /* the format of an ordering:
5324  * iv[0]: factor
5325  * iv[1]: ordering
5326  * iv[2..end]: weights
5327  */
5328  R->order[n] = (rRingOrder_t)((*iv)[1]);
5329  typ=1;
5330  switch ((*iv)[1])
5331  {
5332  case ringorder_ws:
5333  case ringorder_Ws:
5334  typ=-1;
5335  case ringorder_wp:
5336  case ringorder_Wp:
5337  R->wvhdl[n]=(int*)omAlloc((iv->length()-1)*sizeof(int));
5338  R->block0[n] = last+1;
5339  for (i=2; i<iv->length(); i++)
5340  {
5341  R->wvhdl[n][i-2] = (*iv)[i];
5342  last++;
5343  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5344  }
5345  R->block1[n] = si_min(last,R->N);
5346  break;
5347  case ringorder_ls:
5348  case ringorder_ds:
5349  case ringorder_Ds:
5350  case ringorder_rs:
5351  typ=-1;
5352  case ringorder_lp:
5353  case ringorder_dp:
5354  case ringorder_Dp:
5355  case ringorder_rp:
5356  R->block0[n] = last+1;
5357  if (iv->length() == 3) last+=(*iv)[2];
5358  else last += (*iv)[0];
5359  R->block1[n] = si_min(last,R->N);
5360  if (rCheckIV(iv)) return TRUE;
5361  for(i=si_min(rVar(R),R->block1[n]);i>=R->block0[n];i--)
5362  {
5363  if (weights[i]==0) weights[i]=typ;
5364  }
5365  break;
5366 
5367  case ringorder_s: // no 'rank' params!
5368  {
5369 
5370  if(iv->length() > 3)
5371  return TRUE;
5372 
5373  if(iv->length() == 3)
5374  {
5375  const int s = (*iv)[2];
5376  R->block0[n] = s;
5377  R->block1[n] = s;
5378  }
5379  break;
5380  }
5381  case ringorder_IS:
5382  {
5383  if(iv->length() != 3) return TRUE;
5384 
5385  const int s = (*iv)[2];
5386 
5387  if( 1 < s || s < -1 ) return TRUE;
5388 
5389  R->block0[n] = s;
5390  R->block1[n] = s;
5391  break;
5392  }
5393  case ringorder_S:
5394  case ringorder_c:
5395  case ringorder_C:
5396  {
5397  if (rCheckIV(iv)) return TRUE;
5398  break;
5399  }
5400  case ringorder_aa:
5401  case ringorder_a:
5402  {
5403  R->block0[n] = last+1;
5404  R->block1[n] = si_min(last+iv->length()-2 , R->N);
5405  R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int));
5406  for (i=2; i<iv->length(); i++)
5407  {
5408  R->wvhdl[n][i-2]=(*iv)[i];
5409  last++;
5410  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5411  }
5412  last=R->block0[n]-1;
5413  break;
5414  }
5415  case ringorder_am:
5416  {
5417  R->block0[n] = last+1;
5418  R->block1[n] = si_min(last+iv->length()-2 , R->N);
5419  R->wvhdl[n] = (int*)omAlloc(iv->length()*sizeof(int));
5420  if (R->block1[n]- R->block0[n]+2>=iv->length())
5421  WarnS("missing module weights");
5422  for (i=2; i<=(R->block1[n]-R->block0[n]+2); i++)
5423  {
5424  R->wvhdl[n][i-2]=(*iv)[i];
5425  last++;
5426  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5427  }
5428  R->wvhdl[n][i-2]=iv->length() -3 -(R->block1[n]- R->block0[n]);
5429  for (; i<iv->length(); i++)
5430  {
5431  R->wvhdl[n][i-1]=(*iv)[i];
5432  }
5433  last=R->block0[n]-1;
5434  break;
5435  }
5436  case ringorder_a64:
5437  {
5438  R->block0[n] = last+1;
5439  R->block1[n] = si_min(last+iv->length()-2 , R->N);
5440  R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int64));
5441  int64 *w=(int64 *)R->wvhdl[n];
5442  for (i=2; i<iv->length(); i++)
5443  {
5444  w[i-2]=(*iv)[i];
5445  last++;
5446  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5447  }
5448  last=R->block0[n]-1;
5449  break;
5450  }
5451  case ringorder_M:
5452  {
5453  int Mtyp=rTypeOfMatrixOrder(iv);
5454  if (Mtyp==0) return TRUE;
5455  if (Mtyp==-1) typ = -1;
5456 
5457  R->wvhdl[n] =( int *)omAlloc((iv->length()-1)*sizeof(int));
5458  for (i=2; i<iv->length();i++)
5459  R->wvhdl[n][i-2]=(*iv)[i];
5460 
5461  R->block0[n] = last+1;
5462  last += (int)sqrt((double)(iv->length()-2));
5463  R->block1[n] = si_min(last,R->N);
5464  for(i=R->block1[n];i>=R->block0[n];i--)
5465  {
5466  if (weights[i]==0) weights[i]=typ;
5467  }
5468  break;
5469  }
5470 
5471  case ringorder_no:
5472  R->order[n] = ringorder_unspec;
5473  return TRUE;
5474 
5475  default:
5476  Werror("Internal Error: Unknown ordering %d", (*iv)[1]);
5477  R->order[n] = ringorder_unspec;
5478  return TRUE;
5479  }
5480  }
5481  if (last>R->N)
5482  {
5483  Werror("mismatch of number of vars (%d) and ordering (>=%d vars)",
5484  R->N,last);
5485  return TRUE;
5486  }
5487  sl=sl->next;
5488  }
5489  // find OrdSgn:
5490  R->OrdSgn = 1;
5491  for(i=1;i<=R->N;i++)
5492  { if (weights[i]<0) { R->OrdSgn=-1;break; }}
5493  omFree(weights);
5494 
5495  // check for complete coverage
5496  while ( n >= 0 && (
5497  (R->order[n]==ringorder_c)
5498  || (R->order[n]==ringorder_C)
5499  || (R->order[n]==ringorder_s)
5500  || (R->order[n]==ringorder_S)
5501  || (R->order[n]==ringorder_IS)
5502  )) n--;
5503 
5504  assume( n >= 0 );
5505 
5506  if (R->block1[n] != R->N)
5507  {
5508  if (((R->order[n]==ringorder_dp) ||
5509  (R->order[n]==ringorder_ds) ||
5510  (R->order[n]==ringorder_Dp) ||
5511  (R->order[n]==ringorder_Ds) ||
5512  (R->order[n]==ringorder_rp) ||
5513  (R->order[n]==ringorder_rs) ||
5514  (R->order[n]==ringorder_lp) ||
5515  (R->order[n]==ringorder_ls))
5516  &&
5517  R->block0[n] <= R->N)
5518  {
5519  R->block1[n] = R->N;
5520  }
5521  else
5522  {
5523  Werror("mismatch of number of vars (%d) and ordering (%d vars)",
5524  R->N,R->block1[n]);
5525  return TRUE;
5526  }
5527  }
5528  return FALSE;
5529 }
5531 static BOOLEAN rSleftvList2StringArray(leftv sl, char** p)
5532 {
5533 
5534  while(sl!=NULL)
5535  {
5536  if ((sl->rtyp == IDHDL)||(sl->rtyp==ALIAS_CMD))
5537  {
5538  *p = omStrDup(sl->Name());
5539  }
5540  else if (sl->name!=NULL)
5541  {
5542  *p = (char*)sl->name;
5543  sl->name=NULL;
5544  }
5545  else if (sl->rtyp==POLY_CMD)
5546  {
5547  sleftv s_sl;
5548  iiConvert(POLY_CMD,ANY_TYPE,-1,sl,&s_sl);
5549  if (s_sl.name != NULL)
5550  {
5551  *p = (char*)s_sl.name; s_sl.name=NULL;
5552  }
5553  else
5554  *p = NULL;
5555  sl->next = s_sl.next;
5556  s_sl.next = NULL;
5557  s_sl.CleanUp();
5558  if (*p == NULL) return TRUE;
5559  }
5560  else return TRUE;
5561  p++;
5562  sl=sl->next;
5563  }
5564  return FALSE;
5565 }
5567 const short MAX_SHORT = 32767; // (1 << (sizeof(short)*8)) - 1;
5568 
5569 ////////////////////
5570 //
5571 // rInit itself:
5572 //
5573 // INPUT: pn: ch & parameter (names), rv: variable (names)
5574 // ord: ordering (all !=NULL)
5575 // RETURN: currRingHdl on success
5576 // NULL on error
5577 // NOTE: * makes new ring to current ring, on success
5578 // * considers input sleftv's as read-only
5579 ring rInit(leftv pn, leftv rv, leftv ord)
5580 {
5581  int float_len=0;
5582  int float_len2=0;
5583  ring R = NULL;
5584  //BOOLEAN ffChar=FALSE;
5585 
5586  /* ch -------------------------------------------------------*/
5587  // get ch of ground field
5588 
5589  // allocated ring
5590  R = (ring) omAlloc0Bin(sip_sring_bin);
5591 
5592  coeffs cf = NULL;
5593 
5594  assume( pn != NULL );
5595  const int P = pn->listLength();
5596 
5597  if (pn->Typ()==CRING_CMD)
5598  {
5599  cf=(coeffs)pn->CopyD();
5600  leftv pnn=pn;
5601  if(P>1) /*parameter*/
5602  {
5603  pnn = pnn->next;
5604  const int pars = pnn->listLength();
5605  assume( pars > 0 );
5606  char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5607 
5608  if (rSleftvList2StringArray(pnn, names))
5609  {
5610  WerrorS("parameter expected");
5611  goto rInitError;
5612  }
5613 
5614  TransExtInfo extParam;
5615 
5616  extParam.r = rDefault( cf, pars, names); // Q/Zp [ p_1, ... p_pars ]
5617  for(int i=pars-1; i>=0;i--)
5618  {
5619  omFree(names[i]);
5620  }
5621  omFree(names);
5622 
5623  cf = nInitChar(n_transExt, &extParam);
5624  }
5625  assume( cf != NULL );
5626  }
5627  else if (pn->Typ()==INT_CMD)
5628  {
5629  int ch = (int)(long)pn->Data();
5630  leftv pnn=pn;
5631 
5632  /* parameter? -------------------------------------------------------*/
5633  pnn = pnn->next;
5634 
5635  if (pnn == NULL) // no params!?
5636  {
5637  if (ch!=0)
5638  {
5639  int ch2=IsPrime(ch);
5640  if ((ch<2)||(ch!=ch2))
5641  {
5642  Warn("%d is invalid as characteristic of the ground field. 32003 is used.", ch);
5643  ch=32003;
5644  }
5645  #ifndef TEST_ZN_AS_ZP
5646  cf = nInitChar(n_Zp, (void*)(long)ch);
5647  #else
5648  mpz_t modBase;
5649  mpz_init_set_ui(modBase, (long)ch);
5650  ZnmInfo info;
5651  info.base= modBase;
5652  info.exp= 1;
5653  cf=nInitChar(n_Zn,(void*) &info);
5654  cf->is_field=1;
5655  cf->is_domain=1;
5656  cf->has_simple_Inverse=1;
5657  #endif
5658  }
5659  else
5660  cf = nInitChar(n_Q, (void*)(long)ch);
5661  }
5662  else
5663  {
5664  const int pars = pnn->listLength();
5665 
5666  assume( pars > 0 );
5667 
5668  // predefined finite field: (p^k, a)
5669  if ((ch!=0) && (ch!=IsPrime(ch)) && (pars == 1))
5670  {
5671  GFInfo param;
5672 
5673  param.GFChar = ch;
5674  param.GFDegree = 1;
5675  param.GFPar_name = pnn->name;
5676 
5677  cf = nInitChar(n_GF, &param);
5678  }
5679  else // (0/p, a, b, ..., z)
5680  {
5681  if ((ch!=0) && (ch!=IsPrime(ch)))
5682  {
5683  WerrorS("too many parameters");
5684  goto rInitError;
5685  }
5686 
5687  char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5688 
5689  if (rSleftvList2StringArray(pnn, names))
5690  {
5691  WerrorS("parameter expected");
5692  goto rInitError;
5693  }
5694 
5695  TransExtInfo extParam;
5696 
5697  extParam.r = rDefault( ch, pars, names); // Q/Zp [ p_1, ... p_pars ]
5698  for(int i=pars-1; i>=0;i--)
5699  {
5700  omFree(names[i]);
5701  }
5702  omFree(names);
5703 
5704  cf = nInitChar(n_transExt, &extParam);
5705  }
5706  }
5707 
5708  //if (cf==NULL) ->Error: Invalid ground field specification
5709  }
5710  else if ((pn->name != NULL)
5711  && ((strcmp(pn->name,"real")==0) || (strcmp(pn->name,"complex")==0)))
5712  {
5713  leftv pnn=pn->next;
5714  BOOLEAN complex_flag=(strcmp(pn->name,"complex")==0);
5715  if ((pnn!=NULL) && (pnn->Typ()==INT_CMD))
5716  {
5717  float_len=(int)(long)pnn->Data();
5718  float_len2=float_len;
5719  pnn=pnn->next;
5720  if ((pnn!=NULL) && (pnn->Typ()==INT_CMD))
5721  {
5722  float_len2=(int)(long)pnn->Data();
5723  pnn=pnn->next;
5724  }
5725  }
5726 
5727  if (!complex_flag)
5728  complex_flag= (pnn!=NULL) && (pnn->name!=NULL);
5729  if( !complex_flag && (float_len2 <= (short)SHORT_REAL_LENGTH))
5730  cf=nInitChar(n_R, NULL);
5731  else // longR or longC?
5732  {
5733  LongComplexInfo param;
5734 
5735  param.float_len = si_min (float_len, 32767);
5736  param.float_len2 = si_min (float_len2, 32767);
5737 
5738  // set the parameter name
5739  if (complex_flag)
5740  {
5741  if (param.float_len < SHORT_REAL_LENGTH)
5742  {
5745  }
5746  if ((pnn == NULL) || (pnn->name == NULL))
5747  param.par_name=(const char*)"i"; //default to i
5748  else
5749  param.par_name = (const char*)pnn->name;
5750  }
5751 
5752  cf = nInitChar(complex_flag ? n_long_C: n_long_R, (void*)&param);
5753  }
5754  assume( cf != NULL );
5755  }
5756 #ifdef HAVE_RINGS
5757  else if ((pn->name != NULL) && (strcmp(pn->name, "integer") == 0))
5758  {
5759  // TODO: change to use coeffs_BIGINT!?
5760  mpz_t modBase;
5761  unsigned int modExponent = 1;
5762  mpz_init_set_si(modBase, 0);
5763  if (pn->next!=NULL)
5764  {
5765  leftv pnn=pn;
5766  if (pnn->next->Typ()==INT_CMD)
5767  {
5768  pnn=pnn->next;
5769  mpz_set_ui(modBase, (long) pnn->Data());
5770  if ((pnn->next!=NULL) && (pnn->next->Typ()==INT_CMD))
5771  {
5772  pnn=pnn->next;
5773  modExponent = (long) pnn->Data();
5774  }
5775  while ((pnn->next!=NULL) && (pnn->next->Typ()==INT_CMD))
5776  {
5777  pnn=pnn->next;
5778  mpz_mul_ui(modBase, modBase, (int)(long) pnn->Data());
5779  }
5780  }
5781  else if (pnn->next->Typ()==BIGINT_CMD)
5782  {
5783  number p=(number)pnn->next->CopyD();
5784  nlGMP(p,modBase,coeffs_BIGINT); // TODO? // extern void nlGMP(number &i, mpz_t n, const coeffs r); // FIXME: n_MPZ( modBase, p, coeffs_BIGINT); ?
5786  }
5787  }
5788  else
5789  cf=nInitChar(n_Z,NULL);
5790 
5791  if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_sgn1(modBase) < 0))
5792  {
5793  WerrorS("Wrong ground ring specification (module is 1)");
5794  goto rInitError;
5795  }
5796  if (modExponent < 1)
5797  {
5798  WerrorS("Wrong ground ring specification (exponent smaller than 1");
5799  goto rInitError;
5800  }
5801  // module is 0 ---> integers ringtype = 4;
5802  // we have an exponent
5803  if (modExponent > 1 && cf == NULL)
5804  {
5805  if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
5806  {
5807  /* this branch should be active for modExponent = 2..32 resp. 2..64,
5808  depending on the size of a long on the respective platform */
5809  //ringtype = 1; // Use Z/2^ch
5810  cf=nInitChar(n_Z2m,(void*)(long)modExponent);
5811  }
5812  else
5813  {
5814  if (mpz_sgn1(modBase)==0)
5815  {
5816  WerrorS("modulus must not be 0 or parameter not allowed");
5817  goto rInitError;
5818  }
5819  //ringtype = 3;
5820  ZnmInfo info;
5821  info.base= modBase;
5822  info.exp= modExponent;
5823  cf=nInitChar(n_Znm,(void*) &info); //exponent is missing
5824  }
5825  }
5826  // just a module m > 1
5827  else if (cf == NULL)
5828  {
5829  if (mpz_sgn1(modBase)==0)
5830  {
5831  WerrorS("modulus must not be 0 or parameter not allowed");
5832  goto rInitError;
5833  }
5834  //ringtype = 2;
5835  ZnmInfo info;
5836  info.base= modBase;
5837  info.exp= modExponent;
5838  cf=nInitChar(n_Zn,(void*) &info);
5839  }
5840  assume( cf != NULL );
5841  mpz_clear(modBase);
5842  }
5843 #endif
5844  // ring NEW = OLD, (), (); where OLD is a polynomial ring...
5845  else if ((pn->Typ()==RING_CMD) && (P == 1))
5846  {
5847  TransExtInfo extParam;
5848  extParam.r = (ring)pn->Data();
5849  cf = nInitChar(n_transExt, &extParam);
5850  }
5851  //else if ((pn->Typ()==QRING_CMD) && (P == 1)) // same for qrings - which should be fields!?
5852  //{
5853  // AlgExtInfo extParam;
5854  // extParam.r = (ring)pn->Data();
5855 
5856  // cf = nInitChar(n_algExt, &extParam); // Q[a]/<minideal>
5857  //}
5858  else
5859  {
5860  WerrorS("Wrong or unknown ground field specification");
5861 #if 0
5862 // debug stuff for unknown cf descriptions:
5863  sleftv* p = pn;
5864  while (p != NULL)
5865  {
5866  Print( "pn[%p]: type: %d [%s]: %p, name: %s", (void*)p, p->Typ(), Tok2Cmdname(p->Typ()), p->Data(), (p->name == NULL? "NULL" : p->name) );
5867  PrintLn();
5868  p = p->next;
5869  }
5870 #endif
5871  goto rInitError;
5872  }
5873 
5874  /*every entry in the new ring is initialized to 0*/
5875 
5876  /* characteristic -----------------------------------------------*/
5877  /* input: 0 ch=0 : Q parameter=NULL ffChar=FALSE float_len
5878  * 0 1 : Q(a,...) *names FALSE
5879  * 0 -1 : R NULL FALSE 0
5880  * 0 -1 : R NULL FALSE prec. >6
5881  * 0 -1 : C *names FALSE prec. 0..?
5882  * p p : Fp NULL FALSE
5883  * p -p : Fp(a) *names FALSE
5884  * q q : GF(q=p^n) *names TRUE
5885  */
5886  if (cf==NULL)
5887  {
5888  WerrorS("Invalid ground field specification");
5889  goto rInitError;
5890 // const int ch=32003;
5891 // cf=nInitChar(n_Zp, (void*)(long)ch);
5892  }
5893 
5894  assume( R != NULL );
5895 
5896  R->cf = cf;
5897 
5898  /* names and number of variables-------------------------------------*/
5899  {
5900  int l=rv->listLength();
5901 
5902  if (l>MAX_SHORT)
5903  {
5904  Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
5905  goto rInitError;
5906  }
5907  R->N = l; /*rv->listLength();*/
5908  }
5909  R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
5910  if (rSleftvList2StringArray(rv, R->names))
5911  {
5912  WerrorS("name of ring variable expected");
5913  goto rInitError;
5914  }
5915 
5916  /* check names and parameters for conflicts ------------------------- */
5917  rRenameVars(R); // conflicting variables will be renamed
5918  /* ordering -------------------------------------------------------------*/
5919  if (rSleftvOrdering2Ordering(ord, R))
5920  goto rInitError;
5921 
5922  // Complete the initialization
5923  if (rComplete(R,1))
5924  goto rInitError;
5925 
5926 /*#ifdef HAVE_RINGS
5927 // currently, coefficients which are ring elements require a global ordering:
5928  if (rField_is_Ring(R) && (R->OrdSgn==-1))
5929  {
5930  WerrorS("global ordering required for these coefficients");
5931  goto rInitError;
5932  }
5933 #endif*/
5934 
5935  rTest(R);
5936 
5937  // try to enter the ring into the name list
5938  // need to clean up sleftv here, before this ring can be set to
5939  // new currRing or currRing can be killed beacuse new ring has
5940  // same name
5941  pn->CleanUp();
5942  rv->CleanUp();
5943  ord->CleanUp();
5944  //if ((tmp = enterid(s, myynest, RING_CMD, &IDROOT))==NULL)
5945  // goto rInitError;
5946 
5947  //memcpy(IDRING(tmp),R,sizeof(*R));
5948  // set current ring
5949  //omFreeBin(R, ip_sring_bin);
5950  //return tmp;
5951  return R;
5952 
5953  // error case:
5954  rInitError:
5955  if ((R != NULL)&&(R->cf!=NULL)) rDelete(R);
5956  pn->CleanUp();
5957  rv->CleanUp();
5958  ord->CleanUp();
5959  return NULL;
5960 }
5962 ring rSubring(ring org_ring, sleftv* rv)
5963 {
5964  ring R = rCopy0(org_ring);
5965  int *perm=(int *)omAlloc0((org_ring->N+1)*sizeof(int));
5966  int n = rBlocks(org_ring), i=0, j;
5967 
5968  /* names and number of variables-------------------------------------*/
5969  {
5970  int l=rv->listLength();
5971  if (l>MAX_SHORT)
5972  {
5973  Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
5974  goto rInitError;
5975  }
5976  R->N = l; /*rv->listLength();*/
5977  }
5978  omFree(R->names);
5979  R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
5980  if (rSleftvList2StringArray(rv, R->names))
5981  {
5982  WerrorS("name of ring variable expected");
5983  goto rInitError;
5984  }
5985 
5986  /* check names for subring in org_ring ------------------------- */
5987  {
5988  i=0;
5989 
5990  for(j=0;j<R->N;j++)
5991  {
5992  for(;i<org_ring->N;i++)
5993  {
5994  if (strcmp(org_ring->names[i],R->names[j])==0)
5995  {
5996  perm[i+1]=j+1;
5997  break;
5998  }
5999  }
6000  if (i>org_ring->N)
6001  {
6002  Werror("variable %d (%s) not in basering",j+1,R->names[j]);
6003  break;
6004  }
6005  }
6006  }
6007  //Print("perm=");
6008  //for(i=1;i<org_ring->N;i++) Print("v%d -> v%d\n",i,perm[i]);
6009  /* ordering -------------------------------------------------------------*/
6010 
6011  for(i=0;i<n;i++)
6012  {
6013  int min_var=-1;
6014  int max_var=-1;
6015  for(j=R->block0[i];j<=R->block1[i];j++)
6016  {
6017  if (perm[j]>0)
6018  {
6019  if (min_var==-1) min_var=perm[j];
6020  max_var=perm[j];
6021  }
6022  }
6023  if (min_var!=-1)
6024  {
6025  //Print("block %d: old %d..%d, now:%d..%d\n",
6026  // i,R->block0[i],R->block1[i],min_var,max_var);
6027  R->block0[i]=min_var;
6028  R->block1[i]=max_var;
6029  if (R->wvhdl[i]!=NULL)
6030  {
6031  omFree(R->wvhdl[i]);
6032  R->wvhdl[i]=(int*)omAlloc0((max_var-min_var+1)*sizeof(int));
6033  for(j=org_ring->block0[i];j<=org_ring->block1[i];j++)
6034  {
6035  if (perm[j]>0)
6036  {
6037  R->wvhdl[i][perm[j]-R->block0[i]]=
6038  org_ring->wvhdl[i][j-org_ring->block0[i]];
6039  //Print("w%d=%d (orig_w%d)\n",perm[j],R->wvhdl[i][perm[j]-R->block0[i]],j);
6040  }
6041  }
6042  }
6043  }
6044  else
6045  {
6046  if(R->block0[i]>0)
6047  {
6048  //Print("skip block %d\n",i);
6049  R->order[i]=ringorder_unspec;
6050  if (R->wvhdl[i] !=NULL) omFree(R->wvhdl[i]);
6051  R->wvhdl[i]=NULL;
6052  }
6053  //else Print("keep block %d\n",i);
6054  }
6055  }
6056  i=n-1;
6057  while(i>0)
6058  {
6059  // removed unneded blocks
6060  if(R->order[i-1]==ringorder_unspec)
6061  {
6062  for(j=i;j<=n;j++)
6063  {
6064  R->order[j-1]=R->order[j];
6065  R->block0[j-1]=R->block0[j];
6066  R->block1[j-1]=R->block1[j];
6067  if (R->wvhdl[j-1] !=NULL) omFree(R->wvhdl[j-1]);
6068  R->wvhdl[j-1]=R->wvhdl[j];
6069  }
6070  R->order[n]=ringorder_unspec;
6071  n--;
6072  }
6073  i--;
6074  }
6075  n=rBlocks(org_ring)-1;
6076  while (R->order[n]==0) n--;
6077  while (R->order[n]==ringorder_unspec) n--;
6078  if ((R->order[n]==ringorder_c) || (R->order[n]==ringorder_C)) n--;
6079  if (R->block1[n] != R->N)
6080  {
6081  if (((R->order[n]==ringorder_dp) ||
6082  (R->order[n]==ringorder_ds) ||
6083  (R->order[n]==ringorder_Dp) ||
6084  (R->order[n]==ringorder_Ds) ||
6085  (R->order[n]==ringorder_rp) ||
6086  (R->order[n]==ringorder_rs) ||
6087  (R->order[n]==ringorder_lp) ||
6088  (R->order[n]==ringorder_ls))
6089  &&
6090  R->block0[n] <= R->N)
6091  {
6092  R->block1[n] = R->N;
6093  }
6094  else
6095  {
6096  Werror("mismatch of number of vars (%d) and ordering (%d vars) in block %d",
6097  R->N,R->block1[n],n);
6098  return NULL;
6099  }
6100  }
6101  omFree(perm);
6102  // find OrdSgn:
6103  R->OrdSgn = org_ring->OrdSgn; // IMPROVE!
6104  //for(i=1;i<=R->N;i++)
6105  //{ if (weights[i]<0) { R->OrdSgn=-1;break; }}
6106  //omFree(weights);
6107  // Complete the initialization
6108  if (rComplete(R,1))
6109  goto rInitError;
6110 
6111  rTest(R);
6112 
6113  if (rv != NULL) rv->CleanUp();
6114 
6115  return R;
6116 
6117  // error case:
6118  rInitError:
6119  if (R != NULL) rDelete(R);
6120  if (rv != NULL) rv->CleanUp();
6121  return NULL;
6122 }
6124 void rKill(ring r)
6125 {
6126  if ((r->ref<=0)&&(r->order!=NULL))
6127  {
6128 #ifdef RDEBUG
6129  if (traceit &TRACE_SHOW_RINGS) Print("kill ring %lx\n",(long)r);
6130 #endif
6131  int j;
6132  for (j=0;j<myynest;j++)
6133  {
6134  if (iiLocalRing[j]==r)
6135  {
6136  if (j==0) WarnS("killing the basering for level 0");
6137  iiLocalRing[j]=NULL;
6138  }
6139  }
6140 // any variables depending on r ?
6141  while (r->idroot!=NULL)
6142  {
6143  r->idroot->lev=myynest; // avoid warning about kill global objects
6144  killhdl2(r->idroot,&(r->idroot),r);
6145  }
6146  if (r==currRing)
6147  {
6148  // all dependend stuff is done, clean global vars:
6149  if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
6151  {
6153  }
6154  //if ((myynest>0) && (iiRETURNEXPR.RingDependend()))
6155  //{
6156  // WerrorS("return value depends on local ring variable (export missing ?)");
6157  // iiRETURNEXPR.CleanUp();
6158  //}
6159  currRing=NULL;
6160  currRingHdl=NULL;
6161  }
6162 
6163  /* nKillChar(r); will be called from inside of rDelete */
6164  rDelete(r);
6165  return;
6166  }
6167  r->ref--;
6168 }
6170 void rKill(idhdl h)
6171 {
6172  ring r = IDRING(h);
6173  int ref=0;
6174  if (r!=NULL)
6175  {
6176  // avoid, that sLastPrinted is the last reference to the base ring:
6177  // clean up before killing the last "named" refrence:
6178  if ((sLastPrinted.rtyp==RING_CMD)
6179  && (sLastPrinted.data==(void*)r))
6180  {
6181  sLastPrinted.CleanUp(r);
6182  }
6183  ref=r->ref;
6184  if ((ref<=0)&&(r==currRing))
6185  {
6186  // cleanup DENOMINATOR_LIST
6187  if (DENOMINATOR_LIST!=NULL)
6188  {
6190  if (TEST_V_ALLWARN)
6191  Warn("deleting denom_list for ring change from %s",IDID(h));
6192  do
6193  {
6194  n_Delete(&(dd->n),currRing->cf);
6195  dd=dd->next;
6197  DENOMINATOR_LIST=dd;
6198  } while(DENOMINATOR_LIST!=NULL);
6199  }
6200  }
6201  rKill(r);
6202  }
6203  if (h==currRingHdl)
6204  {
6205  if (ref<=0) { currRing=NULL; currRingHdl=NULL;}
6206  else
6207  {
6209  }
6210  }
6211 }
6213 idhdl rSimpleFindHdl(ring r, idhdl root, idhdl n)
6214 {
6215  idhdl h=root;
6216  while (h!=NULL)
6217  {
6218  if ((IDTYP(h)==RING_CMD)
6219  && (h!=n)
6220  && (IDRING(h)==r)
6221  )
6222  {
6223  return h;
6224  }
6225  h=IDNEXT(h);
6226  }
6227  return NULL;
6228 }
6229 
6231 ideal kGroebner(ideal F, ideal Q)
6232 {
6233  //test|=Sy_bit(OPT_PROT);
6234  idhdl save_ringhdl=currRingHdl;
6235  ideal resid;
6236  idhdl new_ring=NULL;
6237  if ((currRingHdl==NULL) || (IDRING(currRingHdl)!=currRing))
6238  {
6239  currRingHdl=enterid(" GROEBNERring",0,RING_CMD,&IDROOT,FALSE);
6240  new_ring=currRingHdl;
6242  }
6243  sleftv v; memset(&v,0,sizeof(v)); v.rtyp=IDEAL_CMD; v.data=(char *) F;
6244  idhdl h=ggetid("groebner");
6245  sleftv u; memset(&u,0,sizeof(u)); u.rtyp=IDHDL; u.data=(char *) h;
6246  u.name=IDID(h);
6247 
6248  sleftv res; memset(&res,0,sizeof(res));
6249  if(jjPROC(&res,&u,&v))
6250  {
6251  resid=kStd(F,Q,testHomog,NULL);
6252  }
6253  else
6254  {
6255  //printf("typ:%d\n",res.rtyp);
6256  resid=(ideal)(res.data);
6257  }
6258  // cleanup GROEBNERring, save_ringhdl, u,v,(res )
6259  if (new_ring!=NULL)
6260  {
6261  idhdl h=IDROOT;
6262  if (h==new_ring) IDROOT=h->next;
6263  else
6264  {
6265  while ((h!=NULL) &&(h->next!=new_ring)) h=h->next;
6266  if (h!=NULL) h->next=h->next->next;
6267  }
6268  if (h!=NULL) omFreeSize(h,sizeof(*h));
6269  }
6270  currRingHdl=save_ringhdl;
6271  u.CleanUp();
6272  v.CleanUp();
6273  return resid;
6274 }
6276 static void jjINT_S_TO_ID(int n,int *e, leftv res)
6277 {
6278  if (n==0) n=1;
6279  ideal l=idInit(n,1);
6280  int i;
6281  poly p;
6282  for(i=rVar(currRing);i>0;i--)
6283  {
6284  if (e[i]>0)
6285  {
6286  n--;
6287  p=pOne();
6288  pSetExp(p,i,1);
6289  pSetm(p);
6290  l->m[n]=p;
6291  if (n==0) break;
6292  }
6293  }
6294  res->data=(char*)l;
6295  setFlag(res,FLAG_STD);
6296  omFreeSize((ADDRESS)e,(rVar(currRing)+1)*sizeof(int));
6299 {
6300  int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6301  int n=pGetVariables((poly)u->Data(),e);
6302  jjINT_S_TO_ID(n,e,res);
6303  return FALSE;
6304 }
6307 {
6308  int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6309  ideal I=(ideal)u->Data();
6310  int i;
6311  int n=0;
6312  for(i=I->nrows*I->ncols-1;i>=0;i--)
6313  {
6314  int n0=pGetVariables(I->m[i],e);
6315  if (n0>n) n=n0;
6316  }
6317  jjINT_S_TO_ID(n,e,res);
6318  return FALSE;
6319 }
6321 void paPrint(const char *n,package p)
6322 {
6323  Print(" %s (",n);
6324  switch (p->language)
6325  {
6326  case LANG_SINGULAR: PrintS("S"); break;
6327  case LANG_C: PrintS("C"); break;
6328  case LANG_TOP: PrintS("T"); break;
6329  case LANG_MAX: PrintS("M"); break;
6330  case LANG_NONE: PrintS("N"); break;
6331  default: PrintS("U");
6332  }
6333  if(p->libname!=NULL)
6334  Print(",%s", p->libname);
6335  PrintS(")");
6336 }
6339 {
6340  intvec *aa=(intvec*)a->Data();
6341  sleftv tmp_out;
6342  sleftv tmp_in;
6343  leftv curr=res;
6344  BOOLEAN bo=FALSE;
6345  for(int i=0;i<aa->length(); i++)
6346  {
6347  memset(&tmp_in,0,sizeof(tmp_in));
6348  tmp_in.rtyp=INT_CMD;
6349  tmp_in.data=(void*)(long)(*aa)[i];
6350  if (proc==NULL)
6351  bo=iiExprArith1(&tmp_out,&tmp_in,op);
6352  else
6353  bo=jjPROC(&tmp_out,proc,&tmp_in);
6354  if (bo)
6355  {
6356  res->CleanUp(currRing);
6357  Werror("apply fails at index %d",i+1);
6358  return TRUE;
6359  }
6360  if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6361  else
6362  {
6363  curr->next=(leftv)omAllocBin(sleftv_bin);
6364  curr=curr->next;
6365  memcpy(curr,&tmp_out,sizeof(tmp_out));
6366  }
6367  }
6368  return FALSE;
6371 {
6372  WerrorS("not implemented");
6373  return TRUE;
6376 {
6377  WerrorS("not implemented");
6378  return TRUE;
6381 {
6382  lists aa=(lists)a->Data();
6383  sleftv tmp_out;
6384  sleftv tmp_in;
6385  leftv curr=res;
6386  BOOLEAN bo=FALSE;
6387  for(int i=0;i<=aa->nr; i++)
6388  {
6389  memset(&tmp_in,0,sizeof(tmp_in));
6390  tmp_in.Copy(&(aa->m[i]));
6391  if (proc==NULL)
6392  bo=iiExprArith1(&tmp_out,&tmp_in,op);
6393  else
6394  bo=jjPROC(&tmp_out,proc,&tmp_in);
6395  tmp_in.CleanUp();
6396  if (bo)
6397  {
6398  res->CleanUp(currRing);
6399  Werror("apply fails at index %d",i+1);
6400  return TRUE;
6401  }
6402  if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6403  else
6404  {
6405  curr->next=(leftv)omAllocBin(sleftv_bin);
6406  curr=curr->next;
6407  memcpy(curr,&tmp_out,sizeof(tmp_out));
6408  }
6409  }
6410  return FALSE;
6412 BOOLEAN iiApply(leftv res, leftv a, int op, leftv proc)
6413 {
6414  memset(res,0,sizeof(sleftv));
6415  res->rtyp=a->Typ();
6416  switch (res->rtyp /*a->Typ()*/)
6417  {
6418  case INTVEC_CMD:
6419  case INTMAT_CMD:
6420  return iiApplyINTVEC(res,a,op,proc);
6421  case BIGINTMAT_CMD:
6422  return iiApplyBIGINTMAT(res,a,op,proc);
6423  case IDEAL_CMD:
6424  case MODUL_CMD:
6425  case MATRIX_CMD:
6426  return iiApplyIDEAL(res,a,op,proc);
6427  case LIST_CMD:
6428  return iiApplyLIST(res,a,op,proc);
6429  }
6430  WerrorS("first argument to `apply` must allow an index");
6431  return TRUE;
6432 }
6435 {
6436  // assume a: level
6437  if ((a->Typ()==INT_CMD)&&((long)a->Data()>=0))
6438  {
6439  if ((TEST_V_ALLWARN) && (myynest==0)) WarnS("ASSUME at top level is of no use: see documentation");
6440  char assume_yylinebuf[80];
6441  strncpy(assume_yylinebuf,my_yylinebuf,79);
6442  int lev=(long)a->Data();
6443  int startlev=0;
6444  idhdl h=ggetid("assumeLevel");
6445  if ((h!=NULL)&&(IDTYP(h)==INT_CMD)) startlev=(long)IDINT(h);
6446  if(lev <=startlev)
6447  {
6448  BOOLEAN bo=b->Eval();
6449  if (bo) { WerrorS("syntax error in ASSUME");return TRUE;}
6450  if (b->Typ()!=INT_CMD) { WerrorS("ASUMME(<level>,<int expr>)");return TRUE; }
6451  if (b->Data()==NULL) { Werror("ASSUME failed:%s",assume_yylinebuf);return TRUE;}
6452  }
6453  }
6454  b->CleanUp();
6455  a->CleanUp();
6456  return FALSE;
6457 }
6458 
6459 #include "libparse.h"
6461 BOOLEAN iiARROW(leftv r, char* a, char *s)
6462 {
6463  char *ss=(char*)omAlloc(strlen(a)+strlen(s)+30); /* max. 27 currently */
6464  // find end of s:
6465  int end_s=strlen(s);
6466  while ((end_s>0) && ((s[end_s]<=' ')||(s[end_s]==';'))) end_s--;
6467  s[end_s+1]='\0';
6468  char *name=(char *)omAlloc(strlen(a)+strlen(s)+30);
6469  sprintf(name,"%s->%s",a,s);
6470  // find start of last expression
6471  int start_s=end_s-1;
6472  while ((start_s>=0) && (s[start_s]!=';')) start_s--;
6473  if (start_s<0) // ';' not found
6474  {
6475  sprintf(ss,"parameter def %s;return(%s);\n",a,s);
6476  }
6477  else // s[start_s] is ';'
6478  {
6479  s[start_s]='\0';
6480  sprintf(ss,"parameter def %s;%s;return(%s);\n",a,s,s+start_s+1);
6481  }
6482  memset(r,0,sizeof(*r));
6483  // now produce procinfo for PROC_CMD:
6484  r->data = (void *)omAlloc0Bin(procinfo_bin);
6485  ((procinfo *)(r->data))->language=LANG_NONE;
6486  iiInitSingularProcinfo((procinfo *)r->data,"",name,0,0);
6487  ((procinfo *)r->data)->data.s.body=ss;
6488  omFree(name);
6489  r->rtyp=PROC_CMD;
6490  //r->rtyp=STRING_CMD;
6491  //r->data=ss;
6492  return FALSE;
6493 }
6495 BOOLEAN iiAssignCR(leftv r, leftv arg)
6496 {
6497  char* ring_name=omStrDup((char*)r->Name());
6498  int t=arg->Typ();
6499  if (t==RING_CMD)
6500  {
6501  sleftv tmp;
6502  memset(&tmp,0,sizeof(tmp));
6503  tmp.rtyp=IDHDL;
6504  tmp.data=(char*)rDefault(ring_name);
6505  if (tmp.data!=NULL)
6506  {
6507  BOOLEAN b=iiAssign(&tmp,arg);
6508  if (b) return TRUE;
6509  rSetHdl(ggetid(ring_name));
6510  omFree(ring_name);
6511  return FALSE;
6512  }
6513  else
6514  return TRUE;
6515  }
6516  else if (t==CRING_CMD)
6517  {
6518  sleftv tmp;
6519  sleftv n;
6520  memset(&n,0,sizeof(n));
6521  n.name=ring_name;
6522  if (iiDeclCommand(&tmp,&n,myynest,CRING_CMD,&IDROOT)) return TRUE;
6523  if (iiAssign(&tmp,arg)) return TRUE;
6524  //Print("create %s\n",r->Name());
6525  //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6526  return FALSE;
6527  }
6528  //Print("create %s\n",r->Name());
6529  //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6530  return TRUE;// not handled -> error for now
6531 }
6533 static void iiReportTypes(int nr,int t,const short *T)
6534 {
6535  char buf[250];
6536  buf[0]='\0';
6537  if (nr==0)
6538  sprintf(buf,"wrong length of parameters(%d), expected ",t);
6539  else
6540  sprintf(buf,"par. %d is of type `%s`, expected ",nr,Tok2Cmdname(t));
6541  for(int i=1;i<=T[0];i++)
6542  {
6543  strcat(buf,"`");
6544  strcat(buf,Tok2Cmdname(T[i]));
6545  strcat(buf,"`");
6546  if (i<T[0]) strcat(buf,",");
6547  }
6548  WerrorS(buf);
6549 }
6551 BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
6552 {
6553  int l=0;
6554  if (args==NULL)
6555  {
6556  if (type_list[0]==0) return TRUE;
6557  }
6558  else l=args->listLength();
6559  if (l!=(int)type_list[0])
6560  {
6561  if (report) iiReportTypes(0,l,type_list);
6562  return FALSE;
6563  }
6564  for(int i=1;i<=l;i++,args=args->next)
6565  {
6566  short t=type_list[i];
6567  if (t!=ANY_TYPE)
6568  {
6569  if (((t==IDHDL)&&(args->rtyp!=IDHDL))
6570  || (t!=args->Typ()))
6571  {
6572  if (report) iiReportTypes(i,args->Typ(),type_list);
6573  return FALSE;
6574  }
6575  }
6576  }
6577  return TRUE;
6578 }
indlist_bin
VAR omBin indlist_bin
Definition: hdegree.cc:22
iiConvert
BOOLEAN iiConvert(int inputType, int outputType, int index, leftv input, leftv output, const struct sConvertTypes *dConvertTypes)
Definition: ipconv.cc:434
si_min
static int si_min(const int a, const int b)
Definition: auxiliary.h:141
FALSE
#define FALSE
Definition: auxiliary.h:96
IDINT
#define IDINT(a)
Definition: ipid.h:119
idCopy
ideal idCopy(ideal A)
Definition: ideals.h:59
rDecomposeC
static void rDecomposeC(leftv h, const ring R)
Definition: ipshell.cc:1757
rComposeRing
void rComposeRing(lists L, ring R)
Definition: ipshell.cc:2312
vandermonde::interpolateDense
number * interpolateDense(const number *q)
Solves the Vandermode linear system \sum_{i=1}^{n} x_i^k-1 w_i = q_k, k=1,..,n.
Definition: mpr_numeric.cc:145
LongComplexInfo::float_len2
short float_len2
additional char-flags, rInit
Definition: coeffs.h:101
omCheckAddrSize
#define omCheckAddrSize(addr, size)
Definition: omAllocDecl.h:325
n_Zn
only used if HAVE_RINGS is defined
Definition: coeffs.h:44
hIndMult
void hIndMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:312
matrix
ip_smatrix * matrix
Definition: matpol.h:42
wFunctionalBuch
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight0.c:77
hutil.h
sleftv::Data
void * Data()
Definition: subexpr.cc:1175
rField_is_Zn
static BOOLEAN rField_is_Zn(const ring r)
Definition: ring.h:506
IDMAP
#define IDMAP(a)
Definition: ipid.h:129
kOptions
VAR BITSET kOptions
Definition: kstd1.cc:41
nCoeff_is_numeric
static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r)
Definition: coeffs.h:853
rField_is_long_R
static BOOLEAN rField_is_long_R(const ring r)
Definition: ring.h:536
rootContainer::onepoly
Definition: mpr_numeric.h:67
GFInfo::GFChar
int GFChar
Definition: coeffs.h:93
iiCheckPack
void iiCheckPack(package &p)
Definition: ipshell.cc:1538
jjBETTI2_ID
BOOLEAN jjBETTI2_ID(leftv res, leftv u, leftv v)
Definition: ipshell.cc:901
pIsConstant
#define pIsConstant(p)
like above, except that Comp must be 0
Definition: polys.h:224
gmp_output_digits
EXTERN_VAR size_t gmp_output_digits
Definition: mpr_base.h:114
rCheckIV
BOOLEAN rCheckIV(const intvec *iv)
Definition: ring.cc:174
copy_deep
void copy_deep(spectrum &spec, lists l)
Definition: ipshell.cc:3333
ipListFlag
void ipListFlag(idhdl h)
Definition: ipid.cc:535
Voice::buffer
char * buffer
Definition: fevoices.h:68
ringorder_Ds
Definition: ring.h:84
ip_smatrix
Definition: matpol.h:13
simplex::m
int m
Definition: mpr_numeric.h:197
TransExtInfo
struct for passing initialization parameters to naInitChar
Definition: transext.h:87
kGroebner
ideal kGroebner(ideal F, ideal Q)
Definition: ipshell.cc:6230
hvar
VAR varset hvar
Definition: hutil.cc:17
hexist
VAR scfmon hexist
Definition: hutil.cc:15
syMinimizeResolvente
void syMinimizeResolvente(resolvente res, int length, int first)
Definition: syz.cc:355
nSetChar
static FORCE_INLINE void nSetChar(const coeffs r)
initialisations after each ring change
Definition: coeffs.h:435
kutil.h
IsPrime
int IsPrime(int p)
Definition: prime.cc:61
jjMINRES
BOOLEAN jjMINRES(leftv res, leftv v)
Definition: ipshell.cc:867
uResultant::denseResMat
Definition: mpr_base.h:64
j
int j
Definition: facHensel.cc:105
f
FILE * f
Definition: checklibs.c:9
spectrumfProc
BOOLEAN spectrumfProc(leftv result, leftv first)
Definition: ipshell.cc:4157
pNorm
void pNorm(poly p, const ring R=currRing)
Definition: polys.h:347
omFree
#define omFree(addr)
Definition: omAllocDecl.h:259
resMatrixBase::initState
virtual IStateType initState() const
Definition: mpr_base.h:40
iiRegularity
int iiRegularity(lists L)
Definition: ipshell.cc:958
k
int k
Definition: cfEzgcd.cc:92
idDelete
#define idDelete(H)
delete an ideal
Definition: ideals.h:28
scComputeHC
void scComputeHC(ideal S, ideal Q, int ak, poly &hEdge, ring tailRing)
Definition: hdegree.cc:1004
nCoeff_is_Z
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
Definition: coeffs.h:837
hpure
VAR scmon hpure
Definition: hutil.cc:16
hNrad
VAR int hNrad
Definition: hutil.cc:18
CRING_CMD
Definition: tok.h:55
semicListNumNegative
Definition: ipshell.cc:3429
LongComplexInfo
Definition: coeffs.h:98
mprOk
Definition: mpr_base.h:97
iiApplyLIST
BOOLEAN iiApplyLIST(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6379
nuVanderSys
BOOLEAN nuVanderSys(leftv res, leftv arg1, leftv arg2, leftv arg3)
COMPUTE: polynomial p with values given by v at points p1,..,pN derived from p; more precisely: consi...
Definition: ipshell.cc:4780
x
Variable x
Definition: cfModGcd.cc:4023
last
STATIC_VAR poly last
Definition: hdegree.cc:1076
NUMBER_CMD
Definition: grammar.cc:288
MATELEM
#define MATELEM(mat, i, j)
1-based access to matrix
Definition: matpol.h:29
bigintmat
Definition: bigintmat.h:49
lastreserved
const char * lastreserved
Definition: ipshell.cc:77
hMu
VAR int hMu
Definition: hdegree.cc:21
rChangeCurrRing
void rChangeCurrRing(ring r)
Definition: polys.cc:15
COLONCOLON
Definition: grammar.cc:275
result
return result
Definition: facAbsBiFact.cc:76
syBetti1
BOOLEAN syBetti1(leftv res, leftv u)
Definition: ipshell.cc:3145
LANG_TOP
Definition: subexpr.h:22
V_DEF_RES
#define V_DEF_RES
Definition: options.h:48
SHORT_REAL_LENGTH
#define SHORT_REAL_LENGTH
Definition: numbers.h:56
BT_execute
Definition: fevoices.h:23
LANG_SINGULAR
Definition: subexpr.h:22
GFInfo
Creation data needed for finite fields.
Definition: coeffs.h:91
BIGINT_CMD
Definition: tok.h:37
n_long_C
complex floating point (GMP) numbers
Definition: coeffs.h:41
iiExprArith1
BOOLEAN iiExprArith1(leftv res, leftv a, int op)
Definition: iparith.cc:8595
polyset
poly * polyset
Definition: polys.h:244
LIST_CMD
Definition: tok.h:117
uResultant::resMatType
resMatType
Definition: mpr_base.h:64
syBetti2
BOOLEAN syBetti2(leftv res, leftv u, leftv w)
Definition: ipshell.cc:3122
syStrategy
ssyStrategy * syStrategy
Definition: syz.h:34
pGetExp
#define pGetExp(p, i)
Exponent.
Definition: polys.h:40
ringorder_ds
Definition: ring.h:83
lists.h
attrib.h
ADDRESS
void * ADDRESS
Definition: auxiliary.h:135
enterid
idhdl enterid(const char *s, int lev, int t, idhdl *root, BOOLEAN init, BOOLEAN search)
Definition: ipid.cc:264
mpz_sgn1
#define mpz_sgn1(A)
Definition: si_gmp.h:13
IDPOLY
#define IDPOLY(a)
Definition: ipid.h:124
si_opt_1
VAR unsigned si_opt_1
Definition: options.c:5
hRadical
void hRadical(scfmon rad, int *Nrad, int Nvar)
Definition: hutil.cc:413
semicListThirdElementWrongType
Definition: ipshell.cc:3417
MODUL_CMD
Definition: grammar.cc:287
ringorder_ws
Definition: ring.h:85
STRING_CMD
Definition: tok.h:183
siq
VAR BOOLEAN siq
Definition: subexpr.cc:47
h
STATIC_VAR Poly * h
Definition: janet.cc:971
LANG_MAX
Definition: subexpr.h:22
CNUMBER_CMD
Definition: tok.h:46
ssyStrategy::fullres
resolvente fullres
Definition: syz.h:56
number2.h
iiAssignCR
BOOLEAN iiAssignCR(leftv r, leftv arg)
Definition: ipshell.cc:6494
resMatrixBase::getSubDet
virtual number getSubDet()
Definition: mpr_base.h:36
jjBETTI2
BOOLEAN jjBETTI2(leftv res, leftv u, leftv v)
Definition: ipshell.cc:922
num
CanonicalForm num(const CanonicalForm &f)
Definition: canonicalform.h:330
paPrint
void paPrint(const char *n, package p)
Definition: ipshell.cc:6320
spectrumZero
Definition: ipshell.cc:3526
rootContainer::solver
bool solver(const int polishmode=PM_NONE)
Definition: mpr_numeric.cc:435
map
CanonicalForm map(const CanonicalForm &primElem, const Variable &alpha, const CanonicalForm &F, const Variable &beta)
map from to such that is mapped onto
Definition: cf_map_ext.cc:400
BITSET
#define BITSET
Definition: structs.h:19
gen_maps.h
currid
const char * currid
Definition: grammar.cc:171
test_cmd
void test_cmd(int i)
Definition: ipshell.cc:508
search
int search(const CFArray &A, const CanonicalForm &F, int i, int j)
search for F in A between index i and j
Definition: facSparseHensel.h:566
spectrum::w
int * w
Definition: semic.h:71
isNotHomog
Definition: structs.h:40
BT_proc
Definition: fevoices.h:20
n_Z2m
only used if HAVE_RINGS is defined
Definition: coeffs.h:46
semicMulNegative
Definition: ipshell.cc:3410
singclap_factorize
ideal singclap_factorize(poly f, intvec **v, int with_exps, const ring r)
Definition: clapsing.cc:841
uResultant::interpolateDenseSP
rootContainer ** interpolateDenseSP(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:2921
semicListWrongNumberOfMultiplicities
Definition: ipshell.cc:3425
weight.h
cf
CanonicalForm cf
Definition: cfModGcd.cc:4024
myychangebuffer
void myychangebuffer()
Definition: scanner.cc:2330
polys.h
syBetti
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
Definition: syz.cc:770
loNewtonPolytope
ideal loNewtonPolytope(const ideal id)
Definition: mpr_base.cc:3190
IDDATA
#define IDDATA(a)
Definition: ipid.h:120
spectrumPolyList::root
spectrumPolyNode * root
Definition: splist.h:60
BREAK_LINE_LENGTH
#define BREAK_LINE_LENGTH
Definition: ipshell.cc:985
id_QHomWeight
intvec * id_QHomWeight(ideal id, const ring r)
Definition: simpleideals.cc:1640
type_cmd
void type_cmd(leftv v)
Definition: ipshell.cc:248
ip_smatrix::cols
int & cols()
Definition: matpol.h:24
semicListMulNegative
Definition: ipshell.cc:3431
STATIC_VAR
#define STATIC_VAR
Definition: globaldefs.h:7
rKill
void rKill(ring r)
Definition: ipshell.cc:6123
idGetNextChoise
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
Definition: simpleideals.cc:863
iiDeclCommand
int iiDeclCommand(leftv sy, leftv name, int lev, int t, idhdl *root, BOOLEAN isring, BOOLEAN init_b)
Definition: ipshell.cc:1124
rComposeVar
static BOOLEAN rComposeVar(const lists L, ring R)
Definition: ipshell.cc:2446
vandermonde
vandermonde system solver for interpolating polynomials from their values
Definition: mpr_numeric.h:27
length
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:263
rDefault
idhdl rDefault(const char *s)
Definition: ipshell.cc:1552
idrec::get
idhdl get(const char *s, int lev)
Definition: ipid.cc:83
procinfo
Definition: subexpr.h:52
sattr
Definition: attrib.h:16
hNexist
VAR int hNexist
Definition: hutil.cc:18
liMakeResolv
lists liMakeResolv(resolvente r, int length, int reallen, int typ0, intvec **weights, int add_row_shift)
Definition: lists.cc:215
omStrDup
#define omStrDup(s)
Definition: omAllocDecl.h:261
sign
static int sign(int x)
Definition: ring.cc:3374
spmulProc
BOOLEAN spmulProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4443
indset
indlist * indset
Definition: hutil.h:27
list1
static void list1(const char *s, idhdl h, BOOLEAN c, BOOLEAN fullname)
Definition: ipshell.cc:144
mpKoszul
BOOLEAN mpKoszul(leftv res, leftv c, leftv b, leftv id)
Definition: ipshell.cc:3066
n_Delete
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition: coeffs.h:454
Voice::filename
char * filename
Definition: fevoices.h:62
ssyStrategy::minres
resolvente minres
Definition: syz.h:57
DEF_CMD
Definition: tok.h:57
n_GF
\GF{p^n < 2^16}
Definition: coeffs.h:32
pNeg
#define pNeg(p)
Definition: polys.h:186
multiplicity
STATIC_VAR int * multiplicity
Definition: interpolation.cc:86
sleftv::attribute
attr attribute
Definition: subexpr.h:88
nInitChar
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
Definition: numbers.cc:349
omAllocBin
#define omAllocBin(bin)
Definition: omAllocDecl.h:203
n_Q
rational (GMP) numbers
Definition: coeffs.h:30
iiCopyRes
static resolvente iiCopyRes(resolvente r, int l)
Definition: ipshell.cc:857
options.h
semicListPGWrong
Definition: ipshell.cc:3437
sqrt
gmp_float sqrt(const gmp_float &a)
Definition: mpr_complex.cc:326
list_is_spectrum
semicState list_is_spectrum(lists l)
Definition: ipshell.cc:4226
ssyStrategy::list_length
short list_length
Definition: syz.h:61
BIGINTMAT_CMD
Definition: grammar.cc:278
omAlloc0Bin
#define omAlloc0Bin(bin)
Definition: omAllocDecl.h:204
semicProc3
BOOLEAN semicProc3(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:4484
n_Znm
only used if HAVE_RINGS is defined
Definition: coeffs.h:45
pDelete
#define pDelete(p_ptr)
Definition: polys.h:175
hDimSolve
void hDimSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:28
spectrumOK
Definition: ipshell.cc:3525
rTest
#define rTest(r)
Definition: ring.h:779
nIsMOne
#define nIsMOne(n)
Definition: numbers.h:25
rField_is_Zp_a
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:523
nCoeff_is_GF
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition: coeffs.h:860
newtonPolygon
Definition: npolygon.h:61
scfmon
scmon * scfmon
Definition: hutil.h:14
syReorder
resolvente syReorder(resolvente res, int length, syStrategy syzstr, BOOLEAN toCopy=TRUE, resolvente totake=NULL)
Definition: syz1.cc:1640
Variable::next
Variable next() const
Definition: factory.h:137
testHomog
Definition: structs.h:42
fe_fgets_stdin
char *(* fe_fgets_stdin)(const char *pr, char *s, int size)
Definition: feread.cc:34
sleftv::RingDependend
BOOLEAN RingDependend()
Definition: subexpr.cc:417
IDMATRIX
#define IDMATRIX(a)
Definition: ipid.h:128
semicListWrongNumberOfNumerators
Definition: ipshell.cc:3423
idIs0
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
Definition: simpleideals.cc:776
semicListTooLong
Definition: ipshell.cc:3413
iiOpsTwoChar
int iiOpsTwoChar(const char *s)
Definition: ipshell.cc:116
loop
#define loop
Definition: structs.h:79
vandermonde::numvec2poly
poly numvec2poly(const number *q)
Definition: mpr_numeric.cc:92
sleftv
Class used for (list of) interpreter objects.
Definition: subexpr.h:81
slists::nr
int nr
Definition: lists.h:43
pSetComp
#define pSetComp(p, v)
Definition: polys.h:37
spectrumUnspecErr
Definition: ipshell.cc:3533
sip_sring_bin
VAR omBin sip_sring_bin
Definition: ring.cc:42
idhdl
idrec * idhdl
Definition: ring.h:20
w
const CanonicalForm & w
Definition: facAbsFact.cc:55
rSleftvOrdering2Ordering
BOOLEAN rSleftvOrdering2Ordering(sleftv *ord, ring R)
Definition: ipshell.cc:5258
nCoeff_is_long_C
static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
Definition: coeffs.h:915
RING_CMD
Definition: grammar.cc:281
spectrumDegenerate
Definition: ipshell.cc:3530
b
CanonicalForm b
Definition: cfModGcd.cc:4044
__p_Mult_nn
#define __p_Mult_nn(p, n, r)
Definition: p_polys.h:915
bigintmat.h
semicListSecondElementWrongType
Definition: ipshell.cc:3416
simplex::posvToIV
intvec * posvToIV()
Definition: mpr_numeric.cc:1071
mprIdealCheck
mprState mprIdealCheck(const ideal theIdeal, const char *name, uResultant::resMatType mtype, BOOLEAN rmatrix=false)
hasAxis
BOOLEAN hasAxis(ideal J, int k, const ring r)
Definition: spectrum.cc:81
fftable
const unsigned short fftable[]
Definition: ffields.cc:30
RingDependend
int RingDependend(int t)
Definition: gentable.cc:27
simplex::m1
int m1
Definition: mpr_numeric.h:199
maApplyFetch
BOOLEAN maApplyFetch(int what, map theMap, leftv res, leftv w, ring preimage_r, int *perm, int *par_perm, int P, nMapFunc nMap)
Definition: maps_ip.cc:44
iiCurrArgs
VAR leftv iiCurrArgs
Definition: ipshell.cc:75
MATRIX_CMD
Definition: grammar.cc:286
IDLIST
#define IDLIST(a)
Definition: ipid.h:131
semicListMilnorWrong
Definition: ipshell.cc:3436
pTotaldegree
static long pTotaldegree(poly p)
Definition: polys.h:266
semicListNNegative
Definition: ipshell.cc:3422
spectrumFromList
spectrum spectrumFromList(lists l)
Definition: ipshell.cc:3357
ANY_TYPE
#define ANY_TYPE
Definition: tok.h:29
currPack
VAR package currPack
Definition: ipid.cc:56
n_long_R
real floating point (GMP) numbers
Definition: coeffs.h:33
leftv
sleftv * leftv
Definition: structs.h:61
found
bool found
Definition: facFactorize.cc:56
hNvar
VAR int hNvar
Definition: hutil.cc:18
ringorder_C
Definition: ring.h:72
rCopy0
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
Definition: ring.cc:1364
mu
void mu(int **points, int sizePoints)
Definition: cfNewtonPolygon.cc:467
rIsPluralRing
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:396
IDLEV
#define IDLEV(a)
Definition: ipid.h:115
pLength
static unsigned pLength(poly a)
Definition: p_polys.h:182
rEqual
BOOLEAN rEqual(ring r1, ring r2, BOOLEAN qr)
returns TRUE, if r1 equals r2 FALSE, otherwise Equality is determined componentwise,...
Definition: ring.cc:1659
singclap_resultant
poly singclap_resultant(poly f, poly g, poly x, const ring r)
Definition: clapsing.cc:278
ringorder_Wp
Definition: ring.h:81
ringorder_S
S?
Definition: ring.h:74
hMu2
VAR int hMu2
Definition: hdegree.cc:21
hCo
VAR int hCo
Definition: hdegree.cc:21
pi
#define pi
Definition: libparse.cc:1144
spectrum::mu
int mu
Definition: semic.h:67
for
for(int i=0;i<=n;i++) degsf[i]
Definition: cfEzgcd.cc:65
rComposeOrder
static BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
Definition: ipshell.cc:2491
packFindHdl
idhdl packFindHdl(package r)
Definition: ipid.cc:749
TransExtInfo::r
ring r
Definition: transext.h:88
sleftv_bin
EXTERN_VAR omBin sleftv_bin
Definition: ipid.h:139
stairc.h
rVar
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:586
sleftv::name
const char * name
Definition: subexpr.h:86
IDINTVEC
#define IDINTVEC(a)
Definition: ipid.h:122
currPackHdl
VAR idhdl currPackHdl
Definition: ipid.cc:54
semicListFirstElementWrongType
Definition: ipshell.cc:3415
TRUE
#define TRUE
Definition: auxiliary.h:100
i
int i
Definition: cfEzgcd.cc:125
Lc
CanonicalForm Lc(const CanonicalForm &f)
Definition: canonicalform.h:300
ivCopy
intvec * ivCopy(const intvec *o)
Definition: intvec.h:134
rHasLocalOrMixedOrdering
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
Definition: ring.h:754
AlgExtInfo
struct for passing initialization parameters to naInitChar
Definition: algext.h:36
feread.h
semicListNotSymmetric
Definition: ipshell.cc:3433
p_PermPoly
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition: p_polys.cc:4033
spectrumNoSingularity
Definition: ipshell.cc:3528
ip_smatrix::rows
int & rows()
Definition: matpol.h:23
res
CanonicalForm res
Definition: facAbsFact.cc:64
rDecompose_CF
BOOLEAN rDecompose_CF(leftv res, const coeffs C)
Definition: ipshell.cc:1853
nIsOne
#define nIsOne(n)
Definition: numbers.h:24
INT_CMD
Definition: tok.h:95
DENOMINATOR_LIST
VAR denominator_list DENOMINATOR_LIST
Definition: kutil.cc:87
prCopy.h
ssyStrategy::orderedRes
resolvente orderedRes
Definition: syz.h:47
id_RankFreeModule
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
Definition: simpleideals.cc:790
nMapFunc
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:72
idIsZeroDim
static BOOLEAN idIsZeroDim(ideal i)
Definition: ideals.h:177
matpol.h
rField_is_Q_a
static BOOLEAN rField_is_Q_a(const ring r)
Definition: ring.h:533
nuUResSolve
BOOLEAN nuUResSolve(leftv res, leftv args)
solve a multipolynomial system using the u-resultant Input ideal must be 0-dimensional and (currRing-...
Definition: ipshell.cc:4881
ringorder_Dp
Definition: ring.h:79
Sy_bit
#define Sy_bit(x)
Definition: options.h:30
intvec::min_in
int min_in()
Definition: intvec.h:121
buf
int status int void * buf
Definition: si_signals.h:58
semicListMuNegative
Definition: ipshell.cc:3427
syConvList
syStrategy syConvList(lists li)
Definition: ipshell.cc:3229
setGMPFloatDigits
void setGMPFloatDigits(size_t digits, size_t rest)
Set size of mantissa digits - the number of output digits (basis 10) the size of mantissa consists of...
Definition: mpr_complex.cc:59
killlocals_rec
void killlocals_rec(idhdl *root, int v, ring r)
Definition: ipshell.cc:324
PrintS
void PrintS(const char *s)
Definition: reporter.cc:283
omFreeSize
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:258
BOOLEAN
int BOOLEAN
Definition: auxiliary.h:87
nCoeff_is_algExt
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:931
proclevel
Definition: ipid.h:53
killlocals
void killlocals(int v)
Definition: ipshell.cc:380
pTest
#define pTest(p)
Definition: polys.h:398
killhdl2
void killhdl2(idhdl h, idhdl *ih, ring r)
Definition: ipid.cc:414
rComposeC
void rComposeC(lists L, ring R)
Definition: ipshell.cc:2241
sNoName_fe
const char sNoName_fe[]
Definition: fevoices.cc:53
PROC_CMD
Definition: grammar.cc:280
simplex::m2
int m2
Definition: mpr_numeric.h:199
clapsing.h
iiApplyIDEAL
BOOLEAN iiApplyIDEAL(leftv, leftv, int, leftv)
Definition: ipshell.cc:6374
simplex::icase
int icase
Definition: mpr_numeric.h:200
rootContainer::getRoot
gmp_complex * getRoot(const int i)
Definition: mpr_numeric.h:87
maMapIdeal
ideal maMapIdeal(const ideal map_id, const ring preimage_r, const ideal image_id, const ring image_r, const nMapFunc nMap)
polynomial map for ideals/module/matrix map_id: the ideal to map map_r: the base ring for map_id imag...
Definition: gen_maps.cc:87
nPrint
#define nPrint(a)
only for debug, over any initalized currRing
Definition: numbers.h:45
kWeight
BOOLEAN kWeight(leftv res, leftv id)
Definition: ipshell.cc:3274
iiExport
BOOLEAN iiExport(leftv v, int toLev)
Definition: ipshell.cc:1416
rmodulon.h
idSkipZeroes
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
Definition: simpleideals.cc:180
iiGetLibProcBuffer
char * iiGetLibProcBuffer(procinfo *pi, int part)
Definition: iplib.cc:192
rField_is_Ring
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:478
VAR
#define VAR
Definition: globaldefs.h:5
denominator_list_s
Definition: kutil.h:60
IDROOT
#define IDROOT
Definition: ipid.h:17
syForceMin
syStrategy syForceMin(lists li)
Definition: ipshell.cc:3258
jjPROC
BOOLEAN jjPROC(leftv res, leftv u, leftv v)
Definition: iparith.cc:1619
ringorder_M
Definition: ring.h:73
sleftv::Init
void Init()
Definition: subexpr.h:106
char_ptr
char * char_ptr
Definition: structs.h:57
resolvente
ideal * resolvente
Definition: ideals.h:17
semicListWrongNumberOfDenominators
Definition: ipshell.cc:3424
nCoeff_is_Ring
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
Definition: coeffs.h:751
spectrum::copy_new
void copy_new(int)
Definition: semic.cc:54
iiMakeResolv
void iiMakeResolv(resolvente r, int length, int rlen, char *name, int typ0, intvec **weights)
Definition: ipshell.cc:768
IDEAL_CMD
Definition: grammar.cc:284
spectrumStateFromList
spectrumState spectrumStateFromList(spectrumPolyList &speclist, lists *L, int fast)
Definition: ipshell.cc:3542
lRingDependend
BOOLEAN lRingDependend(lists L)
Definition: lists.cc:198
semicProc
BOOLEAN semicProc(leftv res, leftv u, leftv v)
Definition: ipshell.cc:4524
mod2.h
GFInfo::GFDegree
int GFDegree
Definition: coeffs.h:94
spectrumWrongRing
Definition: ipshell.cc:3531
rDecompose
lists rDecompose(const ring r)
Definition: ipshell.cc:2055
yylineno
VAR int yylineno
Definition: febase.cc:39
hKill
void hKill(monf xmem, int Nvar)
Definition: hutil.cc:1012
jjBETTI
BOOLEAN jjBETTI(leftv res, leftv u)
Definition: ipshell.cc:888
iiTestAssume
BOOLEAN iiTestAssume(leftv a, leftv b)
Definition: ipshell.cc:6433
coeffs
pOne
#define pOne()
Definition: polys.h:299
atSet
void atSet(idhdl root, char *name, void *data, int typ)
Definition: attrib.cc:149
EQUAL_EQUAL
Definition: grammar.cc:268
singclap_irrCharSeries
matrix singclap_irrCharSeries(ideal I, const ring r)
Definition: clapsing.cc:1452
TRACE_SHOW_RINGS
#define TRACE_SHOW_RINGS
Definition: reporter.h:34
intvec
Definition: intvec.h:18
IDPROC
#define IDPROC(a)
Definition: ipid.h:134
LE
Definition: grammar.cc:270
n_Z
only used if HAVE_RINGS is defined
Definition: coeffs.h:43
Q
STATIC_VAR jList * Q
Definition: janet.cc:30
sleftv::data
void * data
Definition: subexpr.h:87
spectrumPolyNode
Definition: splist.h:35
pIter
#define pIter(p)
Definition: monomials.h:34
list_cmd
void list_cmd(int typ, const char *what, const char *prefix, BOOLEAN iterate, BOOLEAN fullname)
Definition: ipshell.cc:419
rRenameVars
static void rRenameVars(ring R)
Definition: ipshell.cc:2405
omAlloc
#define omAlloc(size)
Definition: omAllocDecl.h:208
PLUSPLUS
Definition: grammar.cc:274
ssyStrategy::length
int length
Definition: syz.h:59
spaddProc
BOOLEAN spaddProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4401
LANG_C
Definition: subexpr.h:22
rPar
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:593
T
STATIC_VAR jList * T
Definition: janet.cc:30
traceit
EXTERN_VAR int traceit
Definition: reporter.h:23
GFInfo::GFPar_name
const char * GFPar_name
Definition: coeffs.h:95
hDelete
void hDelete(scfmon ev, int ev_length)
Definition: hutil.cc:142
fevoices.h
validOpts
VAR BITSET validOpts
Definition: kstd1.cc:56
uResultant::accessResMat
resMatrixBase * accessResMat()
Definition: mpr_base.h:77
LongComplexInfo::float_len
short float_len
additional char-flags, rInit
Definition: coeffs.h:100
syBettiOfComputation
intvec * syBettiOfComputation(syStrategy syzstr, BOOLEAN minim=TRUE, int *row_shift=NULL, intvec *weights=NULL)
Definition: syz1.cc:1754
MAX_SHORT
const short MAX_SHORT
Definition: ipshell.cc:5566
rootArranger
Definition: mpr_numeric.h:148
p_Init
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1242
VECTOR_CMD
Definition: grammar.cc:292
rField_is_R
static BOOLEAN rField_is_R(const ring r)
Definition: ring.h:512
semicListDenNegative
Definition: ipshell.cc:3430
ringorder_am
Definition: ring.h:87
idrec::attribute
attr attribute
Definition: idrec.h:40
IDTYP
#define IDTYP(a)
Definition: ipid.h:113
procinfo_bin
VAR omBin procinfo_bin
Definition: subexpr.cc:41
scIndIndset
lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
Definition: ipshell.cc:1024
sattr::CopyA
void * CopyA()
Definition: subexpr.cc:2033
maps.h
slists::m
sleftv * m
Definition: lists.h:45
wFunctional
THREAD_VAR double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight.cc:19
iiCurrProc
VAR idhdl iiCurrProc
Definition: ipshell.cc:76
computeWC
poly computeWC(const newtonPolygon &np, Rational max_weight, const ring r)
Definition: spectrum.cc:142
intvec.h
rBlocks
static int rBlocks(ring r)
Definition: ring.h:562
__pp_Mult_nn
#define __pp_Mult_nn(p, n, r)
Definition: p_polys.h:946
subexpr.h
iiTestConvert
int iiTestConvert(int inputType, int outputType)
Definition: gentable.cc:301
rCompose
ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask, const int isLetterplace)
Definition: ipshell.cc:2757
iiRETURNEXPR_len
VAR int iiRETURNEXPR_len
Definition: iplib.cc:456
VoiceBackTrack
void VoiceBackTrack()
Definition: fevoices.cc:65
den
CanonicalForm den(const CanonicalForm &f)
Definition: canonicalform.h:333
LANG_NONE
Definition: subexpr.h:22
nuMPResMat
BOOLEAN nuMPResMat(leftv res, leftv arg1, leftv arg2)
returns module representing the multipolynomial resultant matrix Arguments 2: ideal i,...
Definition: ipshell.cc:4628
hrad
VAR scfmon hrad
Definition: hutil.cc:15
sleftv::CleanUp
void CleanUp(ring r=currRing)
Definition: subexpr.cc:347
rSimpleFindHdl
idhdl rSimpleFindHdl(ring r, idhdl root, idhdl n)
Definition: ipshell.cc:6212
ipconv.h
wCall
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
Definition: weight.cc:107
idGetNumberOfChoise
int idGetNumberOfChoise(int t, int d, int begin, int end, int *choise)
Definition: simpleideals.cc:889
hIndAllMult
void hIndAllMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:495
scmon
int * scmon
Definition: hutil.h:13
nCoeff_is_transExt
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:939
mpNew
matrix mpNew(int r, int c)
create a r x c zero-matrix
Definition: matpol.cc:36
rootContainer::fillContainer
void fillContainer(number *_coeffs, number *_ievpoint, const int _var, const int _tdg, const rootType _rt, const int _anz)
Definition: mpr_numeric.cc:298
ringorder_c
Definition: ring.h:71
ringorder_lp
Definition: ring.h:76
complexToStr
char * complexToStr(gmp_complex &c, const unsigned int oprec, const coeffs src)
Definition: mpr_complex.cc:703
nlMapGMP
number nlMapGMP(number from, const coeffs src, const coeffs dst)
Definition: longrat.cc:198
jjVARIABLES_P
BOOLEAN jjVARIABLES_P(leftv res, leftv u)
Definition: ipshell.cc:6297
radmem
VAR monf radmem
Definition: hutil.cc:20
n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition: coeffs.h:38
semicListTooShort
Definition: ipshell.cc:3412
JSet
VAR indset JSet
Definition: hdegree.cc:278
IDRING
#define IDRING(a)
Definition: ipid.h:121
ringorder_dp
Definition: ring.h:77
iiDefaultParameter
BOOLEAN iiDefaultParameter(leftv p)
Definition: ipshell.cc:1168
iiDebugMarker
VAR BOOLEAN iiDebugMarker
Definition: ipshell.cc:984
simplex
Linear Programming / Linear Optimization using Simplex - Algorithm.
Definition: mpr_numeric.h:193
exprlist_length
int exprlist_length(leftv v)
Definition: ipshell.cc:546
iiInternalExport
static BOOLEAN iiInternalExport(leftv v, int toLev)
Definition: ipshell.cc:1318
n_R
single prescision (6,6) real numbers
Definition: coeffs.h:31
hisModule
VAR int hisModule
Definition: hutil.cc:19
pDecrExp
#define pDecrExp(p, i)
Definition: polys.h:43
sdb_flags
VAR int sdb_flags
Definition: sdb.cc:30
n_ParameterNames
static FORCE_INLINE const char ** n_ParameterNames(const coeffs r)
Returns a (const!) pointer to (const char*) names of parameters.
Definition: coeffs.h:799
slists
Definition: lists.h:22
uResultant
Base class for solving 0-dim poly systems using u-resultant.
Definition: mpr_base.h:61
iiRETURNEXPR
INST_VAR sleftv iiRETURNEXPR
Definition: iplib.cc:455
hPure
void hPure(scfmon stc, int a, int *Nstc, varset var, int Nvar, scmon pure, int *Npure)
Definition: hutil.cc:623
hasConstTerm
BOOLEAN hasConstTerm(poly h, const ring r)
Definition: spectrum.h:28
liFindRes
resolvente liFindRes(lists L, int *len, int *typ0, intvec ***weights)
Definition: lists.cc:314
idrec::next
idhdl next
Definition: idrec.h:37
jjRESULTANT
BOOLEAN jjRESULTANT(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:3313
rDelete
void rDelete(ring r)
unconditionally deletes fields in r
Definition: ring.cc:447
INTVEC_CMD
Definition: tok.h:100
determineMType
uResultant::resMatType determineMType(int imtype)
INTMAT_CMD
Definition: grammar.cc:279
ISet
VAR indset ISet
Definition: hdegree.cc:278
iiReportTypes
static void iiReportTypes(int nr, int t, const short *T)
Definition: ipshell.cc:6532
rFindHdl
idhdl rFindHdl(ring r, idhdl n)
Definition: ipshell.cc:1609
procstack
VAR proclevel * procstack
Definition: ipid.cc:51
nIsZero
#define nIsZero(n)
Definition: numbers.h:18
IMATELEM
#define IMATELEM(M, I, J)
Definition: intvec.h:85
ring.h
idrec
Definition: idrec.h:33
iiInitSingularProcinfo
procinfo * iiInitSingularProcinfo(procinfov pi, const char *libname, const char *procname, int, long pos, BOOLEAN pstatic)
Definition: iplib.cc:991
varset
int * varset
Definition: hutil.h:15
transext.h
hInit
scfmon hInit(ideal S, ideal Q, int *Nexist, ring tailRing)
Definition: hutil.cc:30
kstd1.h
IsCmd
int IsCmd(const char *n, int &tok)
Definition: iparith.cc:9007
rField_is_numeric
static BOOLEAN rField_is_numeric(const ring r)
Definition: ring.h:509
maps_ip.h
rField_is_GF
static BOOLEAN rField_is_GF(const ring r)
Definition: ring.h:515
rInit
ring rInit(leftv pn, leftv rv, leftv ord)
Definition: ipshell.cc:5578
nc_CallPlural
BOOLEAN nc_CallPlural(matrix cc, matrix dd, poly cn, poly dn, ring r, bool bSetupQuotient, bool bCopyInput, bool bBeQuiet, ring curr, bool dummy_ring=false)
returns TRUE if there were errors analyze inputs, check them for consistency detects nc_type,...
Definition: old.gring.cc:2682
ALIAS_CMD
Definition: tok.h:33
spectrumNoHC
Definition: ipshell.cc:3532
sleftv::Attribute
attr * Attribute()
Definition: subexpr.cc:1469
rootContainer::getAnzRoots
int getAnzRoots()
Definition: mpr_numeric.h:96
spectrumPolyList
Definition: splist.h:56
libparse.h
Rational::get_den_si
int get_den_si()
Definition: GMPrat.cc:152
pDiff
#define pDiff(a, b)
Definition: polys.h:280
rDecomposeCF
void rDecomposeCF(leftv h, const ring r, const ring R)
Definition: ipshell.cc:1635
simplex::m3
int m3
Definition: mpr_numeric.h:199
IDPACKAGE
#define IDPACKAGE(a)
Definition: ipid.h:133
Rational::get_num_si
int get_num_si()
Definition: GMPrat.cc:138
n_Zp
\F{p < 2^31}
Definition: coeffs.h:29
mpr_numeric.h
iiWRITE
BOOLEAN iiWRITE(leftv, leftv v)
Definition: ipshell.cc:582
spectrumProc
BOOLEAN spectrumProc(leftv result, leftv first)
Definition: ipshell.cc:4106
si_max
static int si_max(const int a, const int b)
Definition: auxiliary.h:140
jjVARIABLES_ID
BOOLEAN jjVARIABLES_ID(leftv res, leftv u)
Definition: ipshell.cc:6305
mpr_base.h
mult
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
Definition: minpoly.cc:647
simplex::zrovToIV
intvec * zrovToIV()
Definition: mpr_numeric.cc:1082
list_error
void list_error(semicState state)
Definition: ipshell.cc:3441
resMatrixBase::ready
Definition: mpr_base.h:25
iiDebug
void iiDebug()
Definition: ipshell.cc:986
iiMap
leftv iiMap(map theMap, const char *what)
Definition: ipshell.cc:609
spectrum::mult_spectrum
int mult_spectrum(spectrum &)
Definition: semic.cc:396
ringIsLocal
BOOLEAN ringIsLocal(const ring r)
Definition: spectrum.cc:461
semicListFifthElementWrongType
Definition: ipshell.cc:3419
ringorder_a
Definition: ring.h:69
BVERBOSE
#define BVERBOSE(a)
Definition: options.h:33
prime.h
Print
#define Print
Definition: emacs.cc:79
nInvers
#define nInvers(a)
Definition: numbers.h:32
QRING_CMD
Definition: tok.h:157
spectrumNotIsolated
Definition: ipshell.cc:3529
spectrumPrintError
void spectrumPrintError(spectrumState state)
Definition: ipshell.cc:4075
iiTwoOps
const char * iiTwoOps(int t)
Definition: ipshell.cc:83
mylimits.h
VoiceName
const char * VoiceName()
Definition: fevoices.cc:54
slists_bin
VAR omBin slists_bin
Definition: lists.cc:22
spectrumPolyList::delete_node
void delete_node(spectrumPolyNode **)
Definition: splist.cc:256
iiApplyINTVEC
BOOLEAN iiApplyINTVEC(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6337
hSupp
void hSupp(scfmon stc, int Nstc, varset var, int *Nvar)
Definition: hutil.cc:176
rSetSyzComp
void rSetSyzComp(int k, const ring r)
Definition: ring.cc:5005
ringorder_IS
Induced (Schreyer) ordering.
Definition: ring.h:92
atGet
void * atGet(idhdl root, const char *name, int t, void *defaultReturnValue)
Definition: attrib.cc:128
Werror
void Werror(const char *fmt,...)
Definition: reporter.cc:188
int64
long int64
Definition: auxiliary.h:68
idInitChoise
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
Definition: simpleideals.cc:841
rOptimizeOrdAsSleftv
static leftv rOptimizeOrdAsSleftv(leftv ord)
Definition: ipshell.cc:5146
pIsPurePower
#define pIsPurePower(p)
Definition: polys.h:234
idInit
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:34
hasOne
int hasOne(ideal J, const ring r)
Definition: spectrum.cc:96
rSimpleOrdStr
const char * rSimpleOrdStr(int ord)
Definition: ring.cc:76
PACKAGE_CMD
Definition: tok.h:148
ringorder_ls
Definition: ring.h:82
ringorder_rp
Definition: ring.h:78
myynest
VAR int myynest
Definition: febase.cc:40
rootArranger::success
bool success()
Definition: mpr_numeric.h:161
name
char name(const Variable &v)
Definition: factory.h:180
pSetCoeff0
#define pSetCoeff0(p, n)
Definition: monomials.h:56
tok.h
IDHDL
#define IDHDL
Definition: tok.h:30
lString
char * lString(lists l, BOOLEAN typed, int dim)
Definition: lists.cc:379
n_Copy
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
Definition: coeffs.h:450
yyparse
int yyparse(void)
Definition: grammar.cc:2111
pow
Rational pow(const Rational &a, int e)
Definition: GMPrat.cc:411
WerrorS
void WerrorS(const char *s)
Definition: feFopen.cc:24
rootArranger::arrange
void arrange()
Definition: mpr_numeric.cc:881
ringorder_s
s?
Definition: ring.h:75
sleftv::Typ
int Typ()
Definition: subexpr.cc:1032
m
int m
Definition: cfEzgcd.cc:121
idrec::typ
int typ
Definition: idrec.h:42
MATCOLS
#define MATCOLS(i)
Definition: matpol.h:27
basePack
VAR package basePack
Definition: ipid.cc:57
WarnS
#define WarnS
Definition: emacs.cc:77
iiHighCorner
poly iiHighCorner(ideal I, int ak)
Definition: ipshell.cc:1514
Variable::name
char name() const
Definition: variable.cc:122
sleftv::rtyp
int rtyp
Definition: subexpr.h:90
syz.h
assume
#define assume(x)
Definition: mod2.h:384
ringorder_L
Definition: ring.h:88
semicListNotMonotonous
Definition: ipshell.cc:3434
sleftv::listLength
int listLength()
Definition: subexpr.cc:50
NULL
#define NULL
Definition: omList.c:11
resMatrixBase::getMatrix
virtual ideal getMatrix()
Definition: mpr_base.h:30
MAP_CMD
Definition: grammar.cc:285
sleftv::CopyD
void * CopyD(int t)
Definition: subexpr.cc:738
nCoeffName
static FORCE_INLINE char * nCoeffName(const coeffs cf)
Definition: coeffs.h:984
coeffs_BIGINT
VAR coeffs coeffs_BIGINT
Definition: ipid.cc:49
lists
slists * lists
Definition: mpr_numeric.h:145
iiARROW
BOOLEAN iiARROW(leftv r, char *a, char *s)
Definition: ipshell.cc:6460
my_yylinebuf
VAR char my_yylinebuf[80]
Definition: febase.cc:42
sleftv::Copy
void Copy(leftv e)
Definition: subexpr.cc:713
ringorder_Ws
Definition: ring.h:86
pSetm
#define pSetm(p)
Definition: polys.h:256
ringorder_no
Definition: ring.h:68
sdb.h
semicListSixthElementWrongType
Definition: ipshell.cc:3420
rSleftvList2StringArray
static BOOLEAN rSleftvList2StringArray(leftv sl, char **p)
Definition: ipshell.cc:5530
computeNF
void computeNF(ideal stdJ, poly hc, poly wc, spectrumPolyList *NF, const ring r)
Definition: spectrum.cc:309
maFindPerm
void maFindPerm(char const *const *const preim_names, int preim_n, char const *const *const preim_par, int preim_p, char const *const *const names, int n, char const *const *const par, int nop, int *perm, int *par_perm, n_coeffType ch)
Definition: maps.cc:162
ideals.h
jjINT_S_TO_ID
static void jjINT_S_TO_ID(int n, int *e, leftv res)
Definition: ipshell.cc:6275
l
int l
Definition: cfEzgcd.cc:93
IDSTRING
#define IDSTRING(a)
Definition: ipid.h:130
killlocals0
static void killlocals0(int v, idhdl *localhdl, const ring r)
Definition: ipshell.cc:289
nDelete
#define nDelete(n)
Definition: numbers.h:15
simplex::compute
void compute()
Definition: mpr_numeric.cc:1093
IDNEXT
#define IDNEXT(a)
Definition: ipid.h:112
errorreported
VAR short errorreported
Definition: feFopen.cc:23
n_Int
static FORCE_INLINE long n_Int(number &n, const coeffs r)
conversion of n to an int; 0 if not possible in Z/pZ: the representing int lying in (-p/2 ....
Definition: coeffs.h:546
binom
int binom(int n, int r)
Definition: simpleideals.cc:921
omRealloc0Size
#define omRealloc0Size(addr, o_size, size)
Definition: omAllocDecl.h:219
R
#define R
Definition: sirandom.c:27
rootArranger::solve_all
void solve_all()
Definition: mpr_numeric.cc:856
spectrum
Definition: semic.h:63
intvec::rows
int rows() const
Definition: intvec.h:96
currRingHdl
VAR idhdl currRingHdl
Definition: ipid.cc:58
iiCheckRing
BOOLEAN iiCheckRing(int i)
Definition: ipshell.cc:1494
rAssure_HasComp
ring rAssure_HasComp(const ring r)
Definition: ring.cc:4572
listOfRoots
lists listOfRoots(rootArranger *self, const unsigned int oprec)
Definition: ipshell.cc:5038
Warn
#define Warn
Definition: emacs.cc:76
semicListPgNegative
Definition: ipshell.cc:3428
hwork
VAR scfmon hwork
Definition: hutil.cc:15
pSetExp
#define pSetExp(p, i, v)
Definition: polys.h:41
v
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37
ringorder_wp
Definition: ring.h:80
denominator_list_s::next
denominator_list next
Definition: kutil.h:60
omCheckAddr
#define omCheckAddr(addr)
Definition: omAllocDecl.h:326
slists::Init
INLINE_THIS void Init(int l=0)
GE
Definition: grammar.cc:269
simplex::mapFromMatrix
BOOLEAN mapFromMatrix(matrix m)
Definition: mpr_numeric.cc:1009
p_Totaldegree
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1428
jjCHARSERIES
BOOLEAN jjCHARSERIES(leftv res, leftv u)
Definition: ipshell.cc:3320
p
int p
Definition: cfModGcd.cc:4019
LongComplexInfo::par_name
const char * par_name
parameter name
Definition: coeffs.h:102
sleftv::Name
const char * Name()
Definition: subexpr.h:119
setFlag
#define setFlag(A, F)
Definition: ipid.h:107
longrat.h
ZnmInfo
Definition: rmodulon.h:17
iiApplyBIGINTMAT
BOOLEAN iiApplyBIGINTMAT(leftv, leftv, int, leftv)
Definition: ipshell.cc:6369
ringorder_unspec
Definition: ring.h:93
spectrum::mult_spectrumh
int mult_spectrumh(spectrum &)
Definition: semic.cc:425
currRing
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
spectrum::s
Rational * s
Definition: semic.h:70
ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:90
semic.h
ggetid
idhdl ggetid(const char *n)
Definition: ipid.cc:520
s
const CanonicalForm int s
Definition: facAbsFact.cc:55
iiCheckTypes
BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
check a list of arguemys against a given field of types return TRUE if the types match return FALSE (...
Definition: ipshell.cc:6550
rTypeOfMatrixOrder
int rTypeOfMatrixOrder(const intvec *order)
Definition: ring.cc:184
nInit
#define nInit(i)
Definition: numbers.h:23
POLY_CMD
Definition: grammar.cc:289
count
int status int void size_t count
Definition: si_signals.h:58
Tok2Cmdname
const char * Tok2Cmdname(int tok)
Definition: gentable.cc:140
NOTEQUAL
Definition: grammar.cc:273
IDID
#define IDID(a)
Definition: ipid.h:116
currentVoice
VAR Voice * currentVoice
Definition: fevoices.cc:45
rDecompose_list_cf
lists rDecompose_list_cf(const ring r)
Definition: ipshell.cc:1924
rootContainer::getAnzElems
int getAnzElems()
Definition: mpr_numeric.h:94
ssyStrategy::hilb_coeffs
intvec ** hilb_coeffs
Definition: syz.h:45
pCopy
#define pCopy(p)
return a copy of the poly
Definition: polys.h:174
spectrumCompute
spectrumState spectrumCompute(poly h, lists *L, int fast)
Definition: ipshell.cc:3783
ipshell.h
n_SetMap
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:720
IDELEMS
#define IDELEMS(i)
Definition: simpleideals.h:23
mpJacobi
BOOLEAN mpJacobi(leftv res, leftv a)
Definition: ipshell.cc:3044
iiParameter
BOOLEAN iiParameter(leftv p)
Definition: ipshell.cc:1282
kStd
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition: kstd1.cc:2087
rDecomposeRing_41
void rDecomposeRing_41(leftv h, const coeffs C)
Definition: ipshell.cc:1793
semicState
semicState
Definition: ipshell.cc:3407
int_ptr
int * int_ptr
Definition: structs.h:58
ringorder_rs
opposite of ls
Definition: ring.h:91
ringorder_a64
for int64 weights
Definition: ring.h:70
FLAG_STD
#define FLAG_STD
Definition: ipid.h:103
hNpure
VAR int hNpure
Definition: hutil.cc:18
rootContainer
complex root finder for univariate polynomials based on laguers algorithm
Definition: mpr_numeric.h:64
pGetCoeff
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:41
getList
lists getList(spectrum &spec)
Definition: ipshell.cc:3369
tmp2
CFList tmp2
Definition: facFqBivar.cc:70
denominator_list_s::n
number n
Definition: kutil.h:60
V_REDEFINE
#define V_REDEFINE
Definition: options.h:43
PrintLn
void PrintLn()
Definition: reporter.cc:309
simplex::n
int n
Definition: mpr_numeric.h:198
ssyStrategy::res
resolvente res
Definition: syz.h:46
rParameter
static const char ** rParameter(const ring r)
(r->cf->parameter)
Definition: ring.h:619
syConvRes
lists syConvRes(syStrategy syzstr, BOOLEAN toDel, int add_row_shift)
Definition: ipshell.cc:3157
mp_Copy
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
Definition: matpol.cc:63
sattr::atyp
int atyp
Definition: attrib.h:26
rField_is_Z
static BOOLEAN rField_is_Z(const ring r)
Definition: ring.h:503
intvec::length
int length() const
Definition: intvec.h:94
rField_is_long_C
static BOOLEAN rField_is_long_C(const ring r)
Definition: ring.h:539
iiLocalRing
VAR ring * iiLocalRing
Definition: iplib.cc:454
MATROWS
#define MATROWS(i)
Definition: matpol.h:26
proc
unsigned char * proc[NUM_PROC]
Definition: checklibs.c:16
sattr::get
attr get(const char *s)
Definition: attrib.cc:89
splist.h
omFreeBin
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:257
MINUSMINUS
Definition: grammar.cc:271
spectrum.h
rField_is_Zp
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:494
sLastPrinted
INST_VAR sleftv sLastPrinted
Definition: subexpr.cc:45
newBuffer
void newBuffer(char *s, feBufferTypes t, procinfo *pi, int lineno)
Definition: fevoices.cc:154
TEST_V_ALLWARN
#define TEST_V_ALLWARN
Definition: options.h:138
iiNoKeepRing
STATIC_VAR BOOLEAN iiNoKeepRing
Definition: ipshell.cc:79
algext.h
AlgExtInfo::r
ring r
Definition: algext.h:37
loNewtonP
BOOLEAN loNewtonP(leftv res, leftv arg1)
compute Newton Polytopes of input polynomials
Definition: ipshell.cc:4536
pGetVariables
#define pGetVariables(p, e)
Definition: polys.h:237
hLexR
void hLexR(scfmon rad, int Nrad, varset var, int Nvar)
Definition: hutil.cc:567
n_MPZ
static FORCE_INLINE void n_MPZ(mpz_t result, number &n, const coeffs r)
conversion of n to a GMP integer; 0 if not possible
Definition: coeffs.h:550
rOrderName
rRingOrder_t rOrderName(char *ordername)
Definition: ring.cc:507
loSimplex
BOOLEAN loSimplex(leftv res, leftv args)
Implementation of the Simplex Algorithm.
Definition: ipshell.cc:4542
pSub
#define pSub(a, b)
Definition: polys.h:271
nCopy
#define nCopy(n)
Definition: numbers.h:14
iiAssign
BOOLEAN iiAssign(leftv l, leftv r, BOOLEAN toplevel)
Definition: ipassign.cc:1829
info
const ExtensionInfo & info
< [in] sqrfree poly
Definition: facFqFactorize.h:38
rRingOrder_t
rRingOrder_t
order stuff
Definition: ring.h:66
LINK_CMD
Definition: tok.h:116
numbers.h
buf2
CanonicalForm buf2
Definition: facFqBivar.cc:71
ssyStrategy::weights
intvec ** weights
Definition: syz.h:44
semicListFourthElementWrongType
Definition: ipshell.cc:3418
pNext
#define pNext(p)
Definition: monomials.h:33
kQHWeight
BOOLEAN kQHWeight(leftv res, leftv v)
Definition: ipshell.cc:3296
CMATRIX_CMD
Definition: tok.h:45
simplex::mapToMatrix
matrix mapToMatrix(matrix m)
Definition: mpr_numeric.cc:1038
ipid.h
omAlloc0
#define omAlloc0(size)
Definition: omAllocDecl.h:209
nuLagSolve
BOOLEAN nuLagSolve(leftv res, leftv arg1, leftv arg2, leftv arg3)
find the (complex) roots an univariate polynomial Determines the roots of an univariate polynomial us...
Definition: ipshell.cc:4651
nSetMap
#define nSetMap(R)
Definition: numbers.h:42
Voice::fptr
long fptr
Definition: fevoices.h:69
semicOK
Definition: ipshell.cc:3409
rDecomposeC_41
static void rDecomposeC_41(leftv h, const coeffs C)
Definition: ipshell.cc:1723
pCmp
#define pCmp(p1, p2)
pCmp: args may be NULL returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2)))
Definition: polys.h:111
Rational
Definition: GMPrat.h:14
spectrumState
spectrumState
Definition: ipshell.cc:3523
rSetHdl
void rSetHdl(idhdl h)
Definition: ipshell.cc:5085
if
if(yy_init)
Definition: libparse.cc:1419
syKillComputation
void syKillComputation(syStrategy syzstr, ring r=currRing)
Definition: syz1.cc:1494
rSubring
ring rSubring(ring org_ring, sleftv *rv)
Definition: ipshell.cc:5961
package
ip_package * package
Definition: structs.h:47
syKillEmptyEntres
void syKillEmptyEntres(resolvente res, int length)
Definition: syz1.cc:2199
si_opt_2
VAR unsigned si_opt_2
Definition: options.c:6
spectrum::n
int n
Definition: semic.h:69
sleftv::next
leftv next
Definition: subexpr.h:85
IDIDEAL
#define IDIDEAL(a)
Definition: ipid.h:127
killlocals_list
BOOLEAN killlocals_list(int v, lists L)
Definition: ipshell.cc:360
uResultant::specializeInU
rootContainer ** specializeInU(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:3059
spectrumBadPoly
Definition: ipshell.cc:3527
idrCopyR
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:191
rDecomposeRing
void rDecomposeRing(leftv h, const ring R)
Definition: ipshell.cc:1821
ssyStrategy
Definition: syz.h:36
n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
Definition: coeffs.h:35
coeffs.h
hCreate
monf hCreate(int Nvar)
Definition: hutil.cc:998
SMATRIX_CMD
Definition: grammar.cc:291
rField_is_Q
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:500
iiApply
BOOLEAN iiApply(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6411
rInternalChar
static int rInternalChar(const ring r)
Definition: ring.h:683
spectrum::pg
int pg
Definition: semic.h:68
iiBranchTo
BOOLEAN iiBranchTo(leftv, leftv args)
Definition: ipshell.cc:1181
rComplete
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
Definition: ring.cc:3397
pWrite
void pWrite(poly p)
Definition: polys.h:292
omReallocSize
#define omReallocSize(addr, o_size, size)
Definition: omAllocDecl.h:218
wrp
void wrp(poly p)
Definition: polys.h:294
nlGMP
void nlGMP(number &i, mpz_t n, const coeffs r)
Definition: longrat.cc:1475
omfree
#define omfree(addr)
Definition: omAllocDecl.h:235
hasLinearTerm
BOOLEAN hasLinearTerm(poly h, const ring r)
Definition: spectrum.h:30
slists::Clean
void Clean(ring r=currRing)
Definition: lists.h:25
DOTDOT
Definition: grammar.cc:267
idMaxIdeal
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
Definition: ideals.h:32