
OSMnx Documentation
Release 1.1.1

Geoff Boeing

Aug 29, 2021

CONTENTS

1 Installation 3

2 Usage 5

3 User reference 7
3.1 User reference . 7
3.2 Internals reference . 45

4 Support 105

5 License 107

6 Indices 109

Python Module Index 111

Index 113

i

ii

OSMnx Documentation, Release 1.1.1

OSMnx is a Python package that lets you download geospatial data from OpenStreetMap and model, project, visualize,
and analyze real-world street networks and any other geospatial geometries. You can download and model walkable,
drivable, or bikeable urban networks with a single line of Python code then easily analyze and visualize them. You
can just as easily download and work with other infrastructure types, amenities/points of interest, building footprints,
elevation data, street bearings/orientations, and speed/travel time.

If you use OSMnx in your work, please cite the journal article:

Boeing, G. 2017. OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street
Networks. Computers, Environment and Urban Systems 65, 126-139. doi:10.1016/j.compenvurbsys.2017.05.004

CONTENTS 1

https://geoffboeing.com/publications/osmnx-complex-street-networks/
https://geoffboeing.com/publications/osmnx-complex-street-networks/

OSMnx Documentation, Release 1.1.1

2 CONTENTS

CHAPTER

ONE

INSTALLATION

You can install OSMnx with conda:

conda config --prepend channels conda-forge
conda create -n ox --strict-channel-priority osmnx

If you want other packages, such as jupyterlab, installed in this environment as well, just add their names after
osmnx above. See the conda documentation for further details. To upgrade OSMnx to a newer release, remove the
conda environment you created and then create a new one again, as above. Don’t just run “conda update” or you could
get package conflicts.

You can also run OSMnx + Jupyter directly from its official Docker container, or you can install OSMnx via pip if you
already have all of its dependencies installed and fully tested on your system. Note: installing the dependencies with
pip is nontrivial. If you don’t know exactly what you’re doing, just use conda as described above.

3

https://conda.io/
https://hub.docker.com/r/gboeing/osmnx
https://pypi.org/project/osmnx/

OSMnx Documentation, Release 1.1.1

4 Chapter 1. Installation

CHAPTER

TWO

USAGE

To get started with OSMnx, read its user reference and work through its examples repo for introductory usage demon-
strations and sample code. Make sure you have read the GeoPandas and NetworkX user guides if you’re not already
familiar with these packages, as OSMnx uses their data structures and functionality.

OSMnx is built on top of GeoPandas, NetworkX, and matplotlib and interacts with OpenStreetMap’s APIs to:

• Download and model street networks or other networked infrastructure anywhere in the world with a single line
of code

• Download any other spatial geometries, place boundaries, building footprints, or points of interest as a Geo-
DataFrame

• Download by city name, polygon, bounding box, or point/address + network distance

• Download drivable, walkable, bikeable, or all street networks

• Download node elevations and calculate edge grades (inclines)

• Impute missing speeds and calculate graph edge travel times

• Simplify and correct the network’s topology to clean-up nodes and consolidate intersections

• Fast map-matching of points, routes, or trajectories to nearest graph edges or nodes

• Save networks to disk as shapefiles, GeoPackages, and GraphML

• Save/load street network to/from a local .osm XML file

• Conduct topological and spatial analyses to automatically calculate dozens of indicators

• Calculate and visualize street bearings and orientations

• Calculate and visualize shortest-path routes that minimize distance, travel time, elevation, etc

• Visualize street networks as a static map or interactive Leaflet web map

• Visualize travel distance and travel time with isoline and isochrone maps

• Plot figure-ground diagrams of street networks and building footprints

OSMnx geocodes place names and addresses with the OpenStreetMap Nominatim API. Using OSMnx’s
geometries module, you can retrieve any geospatial objects (such as building footprints, grocery stores, schools,
public parks, transit stops, etc) from the OpenStreetMap Overpass API as a GeoPandas GeoDataFrame. Using
OSMnx’s graph module, you can retrieve any spatial network data (such as streets, paths, canals, etc) from the
Overpass API and model them as NetworkX MultiDiGraphs.

OSMnx automatically processes network topology from the original raw OpenStreetMap data such that nodes rep-
resent intersections/dead-ends and edges represent the street segments that link them. MultiDiGraphs are nonplanar
directed graphs with possible self-loops and parallel edges. Thus, a one-way street will be represented with a single
directed edge from node u to node v, but a bidirectional street will be represented with two reciprocal directed edges

5

osmnx.html
https://github.com/gboeing/osmnx-examples
https://geopandas.org/
https://networkx.org/

OSMnx Documentation, Release 1.1.1

(with identical geometries): one from node u to node v and another from v to u, to represent both possible directions of
flow. OSMnx can convert a MultiDiGraph to a MultiGraph if you prefer an undirected representation of the network.
It can also convert a MultiDiGraph to/from GeoPandas node and edge GeoDataFrames.

Usage examples and demonstrations of these features are in the examples GitHub repo. More feature development
details are in the change log. Read the journal article for further technical details. Package usage is detailed in the user
reference.

6 Chapter 2. Usage

https://github.com/gboeing/osmnx-examples
https://github.com/gboeing/osmnx/blob/master/CHANGELOG.md
https://geoffboeing.com/publications/osmnx-complex-street-networks/
osmnx.html
osmnx.html

CHAPTER

THREE

USER REFERENCE

3.1 User reference

User reference for the OSMnx package.

This guide covers usage of all public modules and functions. Every function can be accessed via
ox.module_name.function_name() and the vast majority of them can also be accessed directly via ox.function_name()
as a shortcut. Only a few less-common functions are accessible only via ox.module_name.function_name().

3.1.1 osmnx.bearing module

Calculate graph edge bearings.

osmnx.bearing.add_edge_bearings(G, precision=1)
Add compass bearing attributes to all graph edges.

Vectorized function to calculate (initial) bearing from origin node to destination node for each edge in a directed,
unprojected graph then add these bearings as new edge attributes. Bearing represents angle in degrees (clock-
wise) between north and the geodesic line from from the origin node to the destination node. Ignores self-loop
edges as their bearings are undefined.

Parameters

• G (networkx.MultiDiGraph) – unprojected graph

• precision (int) – decimal precision to round bearing

Returns G – graph with edge bearing attributes

Return type networkx.MultiDiGraph

osmnx.bearing.calculate_bearing(lat1, lng1, lat2, lng2)
Calculate the compass bearing(s) between pairs of lat-lng points.

Vectorized function to calculate (initial) bearings between two points’ coordinates or between arrays of points’
coordinates. Expects coordinates in decimal degrees. Bearing represents angle in degrees (clockwise) between
north and the geodesic line from point 1 to point 2.

Parameters

• lat1 (float or numpy.array of float) – first point’s latitude coordinate

• lng1 (float or numpy.array of float) – first point’s longitude coordinate

• lat2 (float or numpy.array of float) – second point’s latitude coordinate

• lng2 (float or numpy.array of float) – second point’s longitude coordinate

7

OSMnx Documentation, Release 1.1.1

Returns bearing – the bearing(s) in decimal degrees

Return type float or numpy.array of float

osmnx.bearing.get_bearing(origin_point, destination_point)
Do not use, deprecated.

Parameters

• origin_point (tuple) – deprecated, do not use

• destination_point (tuple) – deprecated, do not use

Returns bearing – deprecated, do not use

Return type float

osmnx.bearing.orientation_entropy(Gu, num_bins=36, min_length=0, weight=None)
Calculate undirected graph’s orientation entropy.

Orientation entropy is the entropy of its edges’ bidirectional bearings across evenly spaced bins. Ignores self-
loop edges as their bearings are undefined.

Parameters

• Gu (networkx.MultiGraph) – undirected, unprojected graph with bearing attributes
on each edge

• num_bins (int) – number of bins; for example, if num_bins=36 is provided, then each
bin will represent 10° around the compass

• min_length (float) – ignore edges with length attributes less than min_length; useful
to ignore the noise of many very short edges

• weight (string) – if not None, weight edges’ bearings by this (non-null) edge attribute.
for example, if “length” is provided, this will return 1 bearing observation per meter per
street, which could result in a very large bearings array.

Returns entropy – the graph’s orientation entropy

Return type float

osmnx.bearing.plot_orientation(Gu, num_bins=36, min_length=0, weight=None, ax=None,
figsize=(5, 5), area=True, color='#003366', edgecolor='k',
linewidth=0.5, alpha=0.7, title=None, title_y=1.05, ti-
tle_font=None, xtick_font=None)

Plot a polar histogram of a spatial network’s bidirectional edge bearings.

Ignores self-loop edges as their bearings are undefined.

For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network Orientation, Configuration, and
Entropy.” Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1

Parameters

• Gu (networkx.MultiGraph) – undirected, unprojected graph with bearing attributes
on each edge

• num_bins (int) – number of bins; for example, if num_bins=36 is provided, then each
bin will represent 10° around the compass

• min_length (float) – ignore edges with length attributes less than min_length

• weight (string) – if not None, weight edges’ bearings by this (non-null) edge attribute

• ax (matplotlib.axes.PolarAxesSubplot) – if not None, plot on this preexisting
axis; must have projection=polar

8 Chapter 3. User reference

https://doi.org/10.1007/s41109-019-0189-1

OSMnx Documentation, Release 1.1.1

• figsize (tuple) – if ax is None, create new figure with size (width, height)

• area (bool) – if True, set bar length so area is proportional to frequency, otherwise set
bar length so height is proportional to frequency

• color (string) – color of histogram bars

• edgecolor (string) – color of histogram bar edges

• linewidth (float) – width of histogram bar edges

• alpha (float) – opacity of histogram bars

• title (string) – title for plot

• title_y (float) – y position to place title

• title_font (dict) – the title’s fontdict to pass to matplotlib

• xtick_font (dict) – the xtick labels’ fontdict to pass to matplotlib

Returns fig, ax – matplotlib figure, axis

Return type tuple

3.1.2 osmnx.distance module

Calculate distances and shortest paths and find nearest node/edge(s) to point(s).

osmnx.distance.add_edge_lengths(G, precision=3)
Add length attribute (in meters) to each edge.

Vectorized function to calculate great-circle distance between each edge’s incident nodes. Ensure graph is
in unprojected coordinates, and unsimplified to get accurate distances. Note: this function is run by all the
graph.graph_from_x functions automatically to add length attributes to all edges.

Parameters

• G (networkx.MultiDiGraph) – unprojected, unsimplified input graph

• precision (int) – decimal precision to round lengths

Returns G – graph with edge length attributes

Return type networkx.MultiDiGraph

osmnx.distance.euclidean_dist_vec(y1, x1, y2, x2)
Calculate Euclidean distances between pairs of points.

Vectorized function to calculate the Euclidean distance between two points’ coordinates or between arrays of
points’ coordinates. For accurate results, use projected coordinates rather than decimal degrees.

Parameters

• y1 (float or numpy.array of float) – first point’s y coordinate

• x1 (float or numpy.array of float) – first point’s x coordinate

• y2 (float or numpy.array of float) – second point’s y coordinate

• x2 (float or numpy.array of float) – second point’s x coordinate

Returns dist – distance from each (x1, y1) to each (x2, y2) in coordinates’ units

Return type float or numpy.array of float

3.1. User reference 9

OSMnx Documentation, Release 1.1.1

osmnx.distance.get_nearest_edge(G, point, return_geom=False, return_dist=False)
Do not use, deprecated.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• point (tuple) – deprecated, do not use

• return_geom (bool) – deprecated, do not use

• return_dist (bool) – deprecated, do not use

Returns

Return type tuple

osmnx.distance.get_nearest_edges(G, X, Y, method=None, dist=None)
Do not use, deprecated.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• X (list-like) – deprecated, do not use

• Y (list-like) – deprecated, do not use

• method (string) – deprecated, do not use

• dist (float) – deprecated, do not use

Returns

Return type numpy.array

osmnx.distance.get_nearest_node(G, point, method=None, return_dist=False)
Do not use, deprecated.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• point (tuple) – deprecated, do not use

• method (string) – deprecated, do not use

• return_dist (bool) – deprecated, do not use

Returns

Return type int or tuple

osmnx.distance.get_nearest_nodes(G, X, Y, method=None, return_dist=False)
Do not use, deprecated.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• X (list) – deprecated, do not use

• Y (list) – deprecated, do not use

• method (string) – deprecated, do not use

• return_dist (bool) – deprecated, do not use

Returns

10 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

Return type numpy.array or tuple of numpy.array

osmnx.distance.great_circle_vec(lat1, lng1, lat2, lng2, earth_radius=6371009)
Calculate great-circle distances between pairs of points.

Vectorized function to calculate the great-circle distance between two points’ coordinates or between arrays of
points’ coordinates using the haversine formula. Expects coordinates in decimal degrees.

Parameters

• lat1 (float or numpy.array of float) – first point’s latitude coordinate

• lng1 (float or numpy.array of float) – first point’s longitude coordinate

• lat2 (float or numpy.array of float) – second point’s latitude coordinate

• lng2 (float or numpy.array of float) – second point’s longitude coordinate

• earth_radius (float) – earth’s radius in units in which distance will be returned (de-
fault is meters)

Returns dist – distance from each (lat1, lng1) to each (lat2, lng2) in units of earth_radius

Return type float or numpy.array of float

osmnx.distance.k_shortest_paths(G, orig, dest, k, weight='length')
Solve k shortest paths from an origin node to a destination node.

See also shortest_path to get just the one shortest path.

Parameters

• G (networkx.MultiDiGraph) – input graph

• orig (int) – origin node ID

• dest (int) – destination node ID

• k (int) – number of shortest paths to get

• weight (string) – edge attribute to minimize when solving shortest paths. default is
edge length in meters.

Returns paths – a generator of k shortest paths ordered by total weight. each path is a list of node
IDs.

Return type generator

osmnx.distance.nearest_edges(G, X, Y, interpolate=None, return_dist=False)
Find the nearest edge to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest edge to that point. If X and Y are lists of
coordinate values, this will return the nearest edge to each point.

If interpolate is None, search for the nearest edge to each point, one at a time, using an r-tree and minimizing
the euclidean distances from the point to the possible matches. For accuracy, use a projected graph and points.
This method is precise and also fastest if searching for few points relative to the graph’s size.

For a faster method if searching for many points relative to the graph’s size, use the interpolate argument to
interpolate points along the edges and index them. If the graph is projected, this uses a k-d tree for euclidean
nearest neighbor search, which requires that scipy is installed as an optional dependency. If graph is unprojected,
this uses a ball tree for haversine nearest neighbor search, which requires that scikit-learn is installed as an
optional dependency.

Parameters

• G (networkx.MultiDiGraph) – graph in which to find nearest edges

3.1. User reference 11

OSMnx Documentation, Release 1.1.1

• X (float or list) – points’ x (longitude) coordinates, in same CRS/units as graph and
containing no nulls

• Y (float or list) – points’ y (latitude) coordinates, in same CRS/units as graph and
containing no nulls

• interpolate (float) – spacing distance between interpolated points, in same units as
graph. smaller values generate more points.

• return_dist (bool) – optionally also return distance between points and nearest edges

Returns ne or (ne, dist) – nearest edges as (u, v, key) or optionally a tuple where dist contains
distances between the points and their nearest edges

Return type tuple or list

osmnx.distance.nearest_nodes(G, X, Y, return_dist=False)
Find the nearest node to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest node to that point. If X and Y are lists of
coordinate values, this will return the nearest node to each point.

If the graph is projected, this uses a k-d tree for euclidean nearest neighbor search, which requires that scipy
is installed as an optional dependency. If it is unprojected, this uses a ball tree for haversine nearest neighbor
search, which requires that scikit-learn is installed as an optional dependency.

Parameters

• G (networkx.MultiDiGraph) – graph in which to find nearest nodes

• X (float or list) – points’ x (longitude) coordinates, in same CRS/units as graph and
containing no nulls

• Y (float or list) – points’ y (latitude) coordinates, in same CRS/units as graph and
containing no nulls

• return_dist (bool) – optionally also return distance between points and nearest nodes

Returns nn or (nn, dist) – nearest node IDs or optionally a tuple where dist contains distances
between the points and their nearest nodes

Return type int/list or tuple

osmnx.distance.shortest_path(G, orig, dest, weight='length', cpus=1)
Solve shortest path from origin node(s) to destination node(s).

If orig and dest are single node IDs, this will return a list of the nodes constituting the shortest path between
them. If orig and dest are lists of node IDs, this will return a list of lists of the nodes constituting the shortest
path between each origin-destination pair. If a path cannot be solved, this will return None for that path. You
can parallelize solving multiple paths with the cpus parameter, but be careful to not exceed your available RAM.

See also k_shortest_paths to solve multiple shortest paths between a single origin and destination. For additional
functionality or different solver algorithms, use NetworkX directly.

Parameters

• G (networkx.MultiDiGraph) – input graph

• orig (int or list) – origin node ID, or a list of origin node IDs

• dest (int or list) – destination node ID, or a list of destination node IDs

• weight (string) – edge attribute to minimize when solving shortest path

• cpus (int) – how many CPU cores to use; if None, use all available

12 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

Returns path – list of node IDs constituting the shortest path, or, if orig and dest are lists, then a list
of path lists

Return type list

3.1.3 osmnx.downloader module

Interact with the OSM APIs.

osmnx.downloader.nominatim_request(params, request_type='search', pause=1, er-
ror_pause=60)

Send a HTTP GET request to the Nominatim API and return JSON response.

Parameters

• params (OrderedDict) – key-value pairs of parameters

• request_type (string {"search", "reverse", "lookup"}) – which
Nominatim API endpoint to query

• pause (int) – how long to pause before request, in seconds. per the nominatim usage
policy: “an absolute maximum of 1 request per second” is allowed

• error_pause (int) – how long to pause in seconds before re-trying request if error

Returns response_json

Return type dict

osmnx.downloader.overpass_request(data, pause=None, error_pause=60)
Send a HTTP POST request to the Overpass API and return JSON response.

Parameters

• data (OrderedDict) – key-value pairs of parameters

• pause (int) – how long to pause in seconds before request, if None, will query API status
endpoint to find when next slot is available

• error_pause (int) – how long to pause in seconds (in addition to pause) before re-
trying request if error

Returns response_json

Return type dict

3.1.4 osmnx.elevation module

Get node elevations and calculate edge grades.

osmnx.elevation.add_edge_grades(G, add_absolute=True, precision=3)
Add grade attribute to each graph edge.

Vectorized function to calculate the directed grade (ie, rise over run) for each edge in the graph and add it to the
edge as an attribute. Nodes must already have elevation attributes to use this function.

See also the add_node_elevations function.

Parameters

• G (networkx.MultiDiGraph) – input graph with elevation node attribute

• add_absolute (bool) – if True, also add absolute value of grade as grade_abs attribute

3.1. User reference 13

OSMnx Documentation, Release 1.1.1

• precision (int) – decimal precision to round grade values

Returns G – graph with edge grade (and optionally grade_abs) attributes

Return type networkx.MultiDiGraph

osmnx.elevation.add_node_elevations(G, api_key, max_locations_per_batch=350,
pause_duration=0, precision=3)

Do not use, deprecated, will be removed in a future release.

This function and the elevation_provider setting are deprecated.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• api_key (string) – deprecated, do not use

• max_locations_per_batch (int) – deprecated, do not use

• pause_duration (float) – deprecated, do not use

• precision (int) – deprecated, do not use

Returns G

Return type networkx.MultiDiGraph

osmnx.elevation.add_node_elevations_google(G, api_key, max_locations_per_batch=350,
pause_duration=0, precision=3)

Add elevation (meters) attribute to each node using a web service.

This uses the Google Maps Elevation API and requires an API key. For a free, local alternative, see the
add_node_elevations_raster function. See also the add_edge_grades function.

Parameters

• G (networkx.MultiDiGraph) – input graph

• api_key (string) – a Google Maps Elevation API key

• max_locations_per_batch (int) – max number of coordinate pairs to submit in
each API call (if this is too high, the server will reject the request because its character limit
exceeds the max allowed)

• pause_duration (float) – time to pause between API calls, which can be increased
if you get rate limited

• precision (int) – decimal precision to round elevation values

Returns G – graph with node elevation attributes

Return type networkx.MultiDiGraph

osmnx.elevation.add_node_elevations_raster(G, filepath, band=1, cpus=None)
Add elevation attribute to each node from local raster file(s).

If filepath is a list of paths, this will generate a virtual raster composed of the files at those paths as an interme-
diate step.

Parameters

• G (networkx.MultiDiGraph) – input graph, in same CRS as raster

• filepath (string or pathlib.Path or list of strings/Paths) –
path (or list of paths) to the raster file(s) to query

• band (int) – which raster band to query

14 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

• cpus (int) – how many CPU cores to use; if None, use all available

Returns G – graph with node elevation attributes

Return type networkx.MultiDiGraph

3.1.5 osmnx.folium module

Create interactive Leaflet web maps of graphs and routes via folium.

osmnx.folium.plot_graph_folium(G, graph_map=None, popup_attribute=None,
tiles='cartodbpositron', zoom=1, fit_bounds=True,
edge_color=None, edge_width=None, edge_opacity=None,
**kwargs)

Plot a graph as an interactive Leaflet web map.

Note that anything larger than a small city can produce a large web map file that is slow to render in your
browser.

Parameters

• G (networkx.MultiDiGraph) – input graph

• graph_map (folium.folium.Map) – if not None, plot the graph on this preexisting
folium map object

• popup_attribute (string) – edge attribute to display in a pop-up when an edge is
clicked

• tiles (string) – name of a folium tileset

• zoom (int) – initial zoom level for the map

• fit_bounds (bool) – if True, fit the map to the boundaries of the graph’s edges

• edge_color (string) – deprecated, do not use, use kwargs instead

• edge_width (numeric) – deprecated, do not use, use kwargs instead

• edge_opacity (numeric) – deprecated, do not use, use kwargs instead

• kwargs – keyword arguments to pass to folium.PolyLine(), see folium docs for options
(for example color=”#333333”, weight=5, opacity=0.7)

Returns

Return type folium.folium.Map

osmnx.folium.plot_route_folium(G, route, route_map=None, popup_attribute=None,
tiles='cartodbpositron', zoom=1, fit_bounds=True,
route_color=None, route_width=None, route_opacity=None,
**kwargs)

Plot a route as an interactive Leaflet web map.

Parameters

• G (networkx.MultiDiGraph) – input graph

• route (list) – the route as a list of nodes

• route_map (folium.folium.Map) – if not None, plot the route on this preexisting
folium map object

• popup_attribute (string) – edge attribute to display in a pop-up when an edge is
clicked

3.1. User reference 15

OSMnx Documentation, Release 1.1.1

• tiles (string) – name of a folium tileset

• zoom (int) – initial zoom level for the map

• fit_bounds (bool) – if True, fit the map to the boundaries of the route’s edges

• route_color (string) – deprecated, do not use, use kwargs instead

• route_width (numeric) – deprecated, do not use, use kwargs instead

• route_opacity (numeric) – deprecated, do not use, use kwargs instead

• kwargs – keyword arguments to pass to folium.PolyLine(), see folium docs for options
(for example color=”#cc0000”, weight=5, opacity=0.7)

Returns

Return type folium.folium.Map

3.1.6 osmnx.geocoder module

Geocode queries and create GeoDataFrames of place boundaries.

osmnx.geocoder.geocode(query)
Geocode a query string to (lat, lng) with the Nominatim geocoder.

Parameters query (string) – the query string to geocode

Returns point – the (lat, lng) coordinates returned by the geocoder

Return type tuple

osmnx.geocoder.geocode_to_gdf(query, which_result=None, by_osmid=False, buffer_dist=None)
Retrieve place(s) by name or ID from the Nominatim API as a GeoDataFrame.

You can query by place name or OSM ID. If querying by place name, the query argument can be a string or
structured dict, or a list of such strings/dicts to send to geocoder. You can instead query by OSM ID by setting
by_osmid=True. In this case, geocode_to_gdf treats the query argument as an OSM ID (or list of OSM IDs) for
Nominatim lookup rather than text search. OSM IDs must be prepended with their types: node (N), way (W),
or relation (R), in accordance with the Nominatim format. For example, query=[“R2192363”, “N240109189”,
“W427818536”].

If query argument is a list, then which_result should be either a single value or a list with the same length
as query. The queries you provide must be resolvable to places in the Nominatim database. The resulting
GeoDataFrame’s geometry column contains place boundaries if they exist in OpenStreetMap.

Parameters

• query (string or dict or list) – query string(s) or structured dict(s) to geocode

• which_result (int) – which geocoding result to use. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one. to get the top match regardless
of geometry type, set which_result=1

• by_osmid (bool) – if True, handle query as an OSM ID for lookup rather than text search

• buffer_dist (float) – distance to buffer around the place geometry, in meters

Returns gdf – a GeoDataFrame with one row for each query

Return type geopandas.GeoDataFrame

16 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

3.1.7 osmnx.geometries module

Download geospatial entities’ geometries and attributes from OpenStreetMap.

Retrieve points of interest, building footprints, or any other objects from OSM, including their geometries and attribute
data, and construct a GeoDataFrame of them. You can use this module to query for nodes, ways, and relations (the
latter of type “multipolygon” or “boundary” only) by passing a dictionary of desired tags/values.

osmnx.geometries.geometries_from_address(address, tags, dist=1000)
Create GeoDataFrame of OSM entities within some distance N, S, E, W of address.

Parameters

• address (string) – the address to geocode and use as the central point around which to
get the geometries

• tags (dict) – Dict of tags used for finding objects in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

• dist (numeric) – distance in meters

Returns gdf

Return type geopandas.GeoDataFrame

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.geometries.geometries_from_bbox(north, south, east, west, tags)
Create a GeoDataFrame of OSM entities within a N, S, E, W bounding box.

Parameters

• north (float) – northern latitude of bounding box

• south (float) – southern latitude of bounding box

• east (float) – eastern longitude of bounding box

• west (float) – western longitude of bounding box

• tags (dict) – Dict of tags used for finding objects in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

Returns gdf

Return type geopandas.GeoDataFrame

3.1. User reference 17

OSMnx Documentation, Release 1.1.1

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.geometries.geometries_from_place(query, tags, which_result=None, buffer_dist=None)
Create GeoDataFrame of OSM entities within boundaries of geocodable place(s).

The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does
not have a polygon for this place, you can instead get geometries within it using the geometries_from_address
function, which geocodes the place name to a point and gets the geometries within some distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding it, try to vary the query string, pass
in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the
OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to
the geometries_from_polygon function.

Parameters

• query (string or dict or list) – the query or queries to geocode to get place
boundary polygon(s)

• tags (dict) – Dict of tags used for finding objects in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

• which_result (int) – which geocoding result to use. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one.

• buffer_dist (float) – distance to buffer around the place geometry, in meters

Returns gdf

Return type geopandas.GeoDataFrame

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.geometries.geometries_from_point(center_point, tags, dist=1000)
Create GeoDataFrame of OSM entities within some distance N, S, E, W of a point.

Parameters

• center_point (tuple) – the (lat, lng) center point around which to get the geometries

• tags (dict) – Dict of tags used for finding objects in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

• dist (numeric) – distance in meters

18 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

Returns gdf

Return type geopandas.GeoDataFrame

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.geometries.geometries_from_polygon(polygon, tags)
Create GeoDataFrame of OSM entities within boundaries of a (multi)polygon.

Parameters

• polygon (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon) – geographic boundaries to fetch geometries within

• tags (dict) – Dict of tags used for finding objects in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

Returns gdf

Return type geopandas.GeoDataFrame

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.geometries.geometries_from_xml(filepath, polygon=None, tags=None)
Create a GeoDataFrame of OSM entities in an OSM-formatted XML file.

Because this function creates a GeoDataFrame of geometries from an OSM-formatted XML file that has already
been downloaded (i.e. no query is made to the Overpass API) the polygon and tags arguments are not required.
If they are not supplied to the function, geometries_from_xml() will return geometries for all of the tagged
elements in the file. If they are supplied they will be used to filter the final GeoDataFrame.

Parameters

• filepath (string or pathlib.Path) – path to file containing OSM XML data

• polygon (shapely.geometry.Polygon) – optional geographic boundary to filter
objects

• tags (dict) – optional dict of tags for filtering objects from the XML. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

Returns gdf

Return type geopandas.GeoDataFrame

3.1. User reference 19

OSMnx Documentation, Release 1.1.1

3.1.8 osmnx.graph module

Graph creation functions.

osmnx.graph.graph_from_address(address, dist=1000, dist_type='bbox', net-
work_type='all_private', simplify=True, retain_all=False,
truncate_by_edge=False, return_coords=False,
clean_periphery=True, custom_filter=None)

Create a graph from OSM within some distance of some address.

Parameters

• address (string) – the address to geocode and use as the central point around which to
construct the graph

• dist (int) – retain only those nodes within this many meters of the center of the graph

• dist_type (string {"network", "bbox"}) – if “bbox”, retain only those nodes
within a bounding box of the distance parameter. if “network”, retain only those nodes
within some network distance from the center-most node (requires that scikit-learn is in-
stalled as an optional dependency).

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter is
None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one
of node’s neighbors is within the bounding box

• return_coords (bool) – optionally also return the geocoded coordinates of the address

• clean_periphery (bool,) – if True, buffer 500m to get a graph larger than requested,
then simplify, then truncate it to requested spatial boundaries

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns

Return type networkx.MultiDiGraph or optionally (networkx.MultiDiGraph, (lat, lng))

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.graph.graph_from_bbox(north, south, east, west, network_type='all_private', simplify=True,
retain_all=False, truncate_by_edge=False, clean_periphery=True,
custom_filter=None)

Create a graph from OSM within some bounding box.

Parameters

• north (float) – northern latitude of bounding box

• south (float) – southern latitude of bounding box

20 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

• east (float) – eastern longitude of bounding box

• west (float) – western longitude of bounding box

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter is
None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one
of node’s neighbors is within the bounding box

• clean_periphery (bool) – if True, buffer 500m to get a graph larger than requested,
then simplify, then truncate it to requested spatial boundaries

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns G

Return type networkx.MultiDiGraph

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.graph.graph_from_place(query, network_type='all_private', simplify=True, re-
tain_all=False, truncate_by_edge=False, which_result=None,
buffer_dist=None, clean_periphery=True, custom_filter=None)

Create graph from OSM within the boundaries of some geocodable place(s).

The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does
not have a polygon for this place, you can instead get its street network using the graph_from_address function,
which geocodes the place name to a point and gets the network within some distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding it, try to vary the query string, pass
in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the
OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to
the graph_from_polygon function.

Parameters

• query (string or dict or list) – the query or queries to geocode to get place
boundary polygon(s)

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter is
None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside boundary polygon if at least
one of node’s neighbors is within the polygon

3.1. User reference 21

OSMnx Documentation, Release 1.1.1

• which_result (int) – which geocoding result to use. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one.

• buffer_dist (float) – distance to buffer around the place geometry, in meters

• clean_periphery (bool) – if True, buffer 500m to get a graph larger than requested,
then simplify, then truncate it to requested spatial boundaries

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns G

Return type networkx.MultiDiGraph

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.graph.graph_from_point(center_point, dist=1000, dist_type='bbox', net-
work_type='all_private', simplify=True, retain_all=False, trun-
cate_by_edge=False, clean_periphery=True, custom_filter=None)

Create a graph from OSM within some distance of some (lat, lng) point.

Parameters

• center_point (tuple) – the (lat, lng) center point around which to construct the graph

• dist (int) – retain only those nodes within this many meters of the center of the graph,
with distance determined according to dist_type argument

• dist_type (string {"network", "bbox"}) – if “bbox”, retain only those nodes
within a bounding box of the distance parameter. if “network”, retain only those nodes
within some network distance from the center-most node (requires that scikit-learn is in-
stalled as an optional dependency).

• network_type (string, {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter
is None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one
of node’s neighbors is within the bounding box

• clean_periphery (bool,) – if True, buffer 500m to get a graph larger than requested,
then simplify, then truncate it to requested spatial boundaries

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns G

Return type networkx.MultiDiGraph

22 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.graph.graph_from_polygon(polygon, network_type='all_private', simplify=True,
retain_all=False, truncate_by_edge=False,
clean_periphery=True, custom_filter=None)

Create a graph from OSM within the boundaries of some shapely polygon.

Parameters

• polygon (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon) – the shape to get network data within. coordinates should be in
unprojected latitude-longitude degrees (EPSG:4326).

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter is
None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside boundary polygon if at least
one of node’s neighbors is within the polygon

• clean_periphery (bool) – if True, buffer 500m to get a graph larger than requested,
then simplify, then truncate it to requested spatial boundaries

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns G

Return type networkx.MultiDiGraph

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.graph.graph_from_xml(filepath, bidirectional=False, simplify=True, retain_all=False)
Create a graph from data in a .osm formatted XML file.

Parameters

• filepath (string or pathlib.Path) – path to file containing OSM XML data

• bidirectional (bool) – if True, create bi-directional edges for one-way streets

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

Returns G

Return type networkx.MultiDiGraph

3.1. User reference 23

OSMnx Documentation, Release 1.1.1

3.1.9 osmnx.io module

Serialize graphs to/from files on disk.

osmnx.io.load_graphml(filepath, node_dtypes=None, edge_dtypes=None, graph_dtypes=None)
Load an OSMnx-saved GraphML file from disk.

This converts node, edge, and graph-level attributes (serialized as strings) to their appropriate data types.
These can be customized as needed by passing in dtypes arguments providing types or custom converter
functions. For example, if you want to convert some attribute’s values to bool, consider using the built-in
ox.io._convert_bool_string function to properly handle “True”/”False” string literals as True/False booleans:
ox.load_graphml(fp, node_dtypes={my_attr: ox.io._convert_bool_string})

If you manually configured the all_oneway=True setting, you may need to manually specify here that edge
oneway attributes should be type str.

Parameters

• filepath (string or pathlib.Path) – path to the GraphML file

• node_dtypes (dict) – dict of node attribute names:types to convert values’ data types.
the type can be a python type or a custom string converter function.

• edge_dtypes (dict) – dict of edge attribute names:types to convert values’ data types.
the type can be a python type or a custom string converter function.

• graph_dtypes (dict) – dict of graph-level attribute names:types to convert values’ data
types. the type can be a python type or a custom string converter function.

Returns G

Return type networkx.MultiDiGraph

osmnx.io.save_graph_geopackage(G, filepath=None, encoding='utf-8', directed=False)
Save graph nodes and edges to disk as layers in a GeoPackage file.

Parameters

• G (networkx.MultiDiGraph) – input graph

• filepath (string or pathlib.Path) – path to the GeoPackage file including ex-
tension. if None, use default data folder + graph.gpkg

• encoding (string) – the character encoding for the saved file

• directed (bool) – if False, save one edge for each undirected edge in the graph but
retain original oneway and to/from information as edge attributes; if True, save one edge for
each directed edge in the graph

Returns

Return type None

osmnx.io.save_graph_shapefile(G, filepath=None, encoding='utf-8', directed=False)
Save graph nodes and edges to disk as ESRI shapefiles.

The shapefile format is proprietary and outdated. Whenever possible, you should use the superior GeoPackage
file format instead via the save_graph_geopackage function.

Parameters

• G (networkx.MultiDiGraph) – input graph

• filepath (string or pathlib.Path) – path to the shapefiles folder (no file ex-
tension). if None, use default data folder + graph_shapefile

24 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

• encoding (string) – the character encoding for the saved files

• directed (bool) – if False, save one edge for each undirected edge in the graph but
retain original oneway and to/from information as edge attributes; if True, save one edge for
each directed edge in the graph

Returns

Return type None

osmnx.io.save_graph_xml(data, filepath=None, node_tags=['highway'], node_attrs=['id', 'timestamp',
'uid', 'user', 'version', 'changeset', 'lat', 'lon'], edge_tags=['highway',
'lanes', 'maxspeed', 'name', 'oneway'], edge_attrs=['id', 'timestamp',
'uid', 'user', 'version', 'changeset'], oneway=False, merge_edges=True,
edge_tag_aggs=None)

Do not use: deprecated. Use osm_xml.save_graph_xml instead.

Parameters

• data (networkx multi(di)graph OR a length 2 iterable of
nodes/edges) – geopandas GeoDataFrames

• filepath (string or pathlib.Path) – path to the .osm file including extension.
if None, use default data folder + graph.osm

• node_tags (list) – osm node tags to include in output OSM XML

• node_attrs (list) – osm node attributes to include in output OSM XML

• edge_tags (list) – osm way tags to include in output OSM XML

• edge_attrs (list) – osm way attributes to include in output OSM XML

• oneway (bool) – the default oneway value used to fill this tag where missing

• merge_edges (bool) – if True merges graph edges such that each OSM way has one
entry and one entry only in the OSM XML. Otherwise, every OSM way will have a separate
entry for each node pair it contains.

• edge_tag_aggs (list of length-2 string tuples) – useful only if
merge_edges is True, this argument allows the user to specify edge attributes to aggregate
such that the merged OSM way entry tags accurately represent the sum total of their
component edge attributes. For example, if the user wants the OSM way to have a “length”
attribute, the user must specify edge_tag_aggs=[(‘length’, ‘sum’)] in order to tell this
method to aggregate the lengths of the individual component edges. Otherwise, the length
attribute will simply reflect the length of the first edge associated with the way.

Returns

Return type None

osmnx.io.save_graphml(G, filepath=None, gephi=False, encoding='utf-8')
Save graph to disk as GraphML file.

Parameters

• G (networkx.MultiDiGraph) – input graph

• filepath (string or pathlib.Path) – path to the GraphML file including exten-
sion. if None, use default data folder + graph.graphml

• gephi (bool) – if True, give each edge a unique key/id to work around Gephi’s interpre-
tation of the GraphML specification

• encoding (string) – the character encoding for the saved file

3.1. User reference 25

OSMnx Documentation, Release 1.1.1

Returns

Return type None

3.1.10 osmnx.osm_xml module

Read/write .osm formatted XML files.

osmnx.osm_xml.save_graph_xml(data, filepath=None, node_tags=['highway'], node_attrs=['id',
'timestamp', 'uid', 'user', 'version', 'changeset', 'lat', 'lon'],
edge_tags=['highway', 'lanes', 'maxspeed', 'name', 'oneway'],
edge_attrs=['id', 'timestamp', 'uid', 'user', 'version', 'changeset'],
oneway=False, merge_edges=True, edge_tag_aggs=None)

Save graph to disk as an OSM-formatted XML .osm file.

This function exists only to allow serialization to the .osm file format for applications that require it, and
has constraints to conform to that. To save/load full-featured OSMnx graphs to/from disk for later use,
use the io.save_graphml and io.load_graphml functions instead. To load a graph from a .osm file, use the
graph.graph_from_xml function.

Note: for large networks this function can take a long time to run. Before using this function, make sure you
configured OSMnx as described in the example below when you created the graph.

Example

>>> import osmnx as ox
>>> utn = ox.settings.useful_tags_node
>>> oxna = ox.settings.osm_xml_node_attrs
>>> oxnt = ox.settings.osm_xml_node_tags
>>> utw = ox.settings.useful_tags_way
>>> oxwa = ox.settings.osm_xml_way_attrs
>>> oxwt = ox.settings.osm_xml_way_tags
>>> utn = list(set(utn + oxna + oxnt))
>>> utw = list(set(utw + oxwa + oxwt))
>>> ox.config(all_oneway=True, useful_tags_node=utn, useful_tags_way=utw)
>>> G = ox.graph_from_place('Piedmont, CA, USA', network_type='drive')
>>> ox.save_graph_xml(G, filepath='./data/graph.osm')

Parameters

• data (networkx multi(di)graph OR a length 2 iterable of
nodes/edges) – geopandas GeoDataFrames

• filepath (string or pathlib.Path) – path to the .osm file including extension.
if None, use default data folder + graph.osm

• node_tags (list) – osm node tags to include in output OSM XML

• node_attrs (list) – osm node attributes to include in output OSM XML

• edge_tags (list) – osm way tags to include in output OSM XML

• edge_attrs (list) – osm way attributes to include in output OSM XML

• oneway (bool) – the default oneway value used to fill this tag where missing

• merge_edges (bool) – if True merges graph edges such that each OSM way has one
entry and one entry only in the OSM XML. Otherwise, every OSM way will have a separate
entry for each node pair it contains.

26 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

• edge_tag_aggs (list of length-2 string tuples) – useful only if
merge_edges is True, this argument allows the user to specify edge attributes to aggregate
such that the merged OSM way entry tags accurately represent the sum total of their
component edge attributes. For example, if the user wants the OSM way to have a “length”
attribute, the user must specify edge_tag_aggs=[(‘length’, ‘sum’)] in order to tell this
method to aggregate the lengths of the individual component edges. Otherwise, the length
attribute will simply reflect the length of the first edge associated with the way.

Returns

Return type None

3.1.11 osmnx.plot module

Plot spatial geometries, street networks, and routes.

osmnx.plot.get_colors(n, cmap='viridis', start=0.0, stop=1.0, alpha=1.0, return_hex=False)
Get n evenly-spaced colors from a matplotlib colormap.

Parameters

• n (int) – number of colors

• cmap (string) – name of a matplotlib colormap

• start (float) – where to start in the colorspace

• stop (float) – where to end in the colorspace

• alpha (float) – opacity, the alpha channel for the RGBa colors

• return_hex (bool) – if True, convert RGBa colors to HTML-like hexadecimal RGB
strings. if False, return colors as (R, G, B, alpha) tuples.

Returns color_list

Return type list

osmnx.plot.get_edge_colors_by_attr(G, attr, num_bins=None, cmap='viridis', start=0, stop=1,
na_color='none', equal_size=False)

Get colors based on edge attribute values.

Parameters

• G (networkx.MultiDiGraph) – input graph

• attr (string) – name of a numerical edge attribute

• num_bins (int) – if None, linearly map a color to each value. otherwise, assign values
to this many bins then assign a color to each bin.

• cmap (string) – name of a matplotlib colormap

• start (float) – where to start in the colorspace

• stop (float) – where to end in the colorspace

• na_color (string) – what color to assign edges with missing attr values

• equal_size (bool) – ignored if num_bins is None. if True, bin into equal-sized quan-
tiles (requires unique bin edges). if False, bin into equal-spaced bins.

Returns edge_colors – series labels are edge IDs (u, v, key) and values are colors

Return type pandas.Series

3.1. User reference 27

OSMnx Documentation, Release 1.1.1

osmnx.plot.get_node_colors_by_attr(G, attr, num_bins=None, cmap='viridis', start=0, stop=1,
na_color='none', equal_size=False)

Get colors based on node attribute values.

Parameters

• G (networkx.MultiDiGraph) – input graph

• attr (string) – name of a numerical node attribute

• num_bins (int) – if None, linearly map a color to each value. otherwise, assign values
to this many bins then assign a color to each bin.

• cmap (string) – name of a matplotlib colormap

• start (float) – where to start in the colorspace

• stop (float) – where to end in the colorspace

• na_color (string) – what color to assign nodes with missing attr values

• equal_size (bool) – ignored if num_bins is None. if True, bin into equal-sized quan-
tiles (requires unique bin edges). if False, bin into equal-spaced bins.

Returns node_colors – series labels are node IDs and values are colors

Return type pandas.Series

osmnx.plot.plot_figure_ground(G=None, address=None, point=None, dist=805,
network_type='drive_service', street_widths=None,
default_width=4, figsize=(8, 8), edge_color='w',
smooth_joints=True, **pg_kwargs)

Plot a figure-ground diagram of a street network.

Parameters

• G (networkx.MultiDiGraph) – input graph, must be unprojected

• address (string) – address to geocode as the center point if G is not passed in

• point (tuple) – center point if address and G are not passed in

• dist (numeric) – how many meters to extend north, south, east, west from center point

• network_type (string) – what type of street network to get

• street_widths (dict) – dict keys are street types and values are widths to plot in pixels

• default_width (numeric) – fallback width in pixels for any street type not in
street_widths

• figsize (numeric) – (width, height) of figure, should be equal

• edge_color (string) – color of the edges’ lines

• smooth_joints (bool) – if True, plot nodes same width as streets to smooth line joints
and prevent cracks between them from showing

• pg_kwargs – keyword arguments to pass to plot_graph

Returns fig, ax – matplotlib figure, axis

Return type tuple

osmnx.plot.plot_footprints(gdf, ax=None, figsize=(8, 8), color='orange', alpha=None, bg-
color='#111111', bbox=None, save=False, show=True, close=False,
filepath=None, dpi=600)

Plot a GeoDataFrame of geospatial entities’ footprints.

28 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

Parameters

• gdf (geopandas.GeoDataFrame) – GeoDataFrame of footprints (shapely Polygons
and MultiPolygons)

• ax (axis) – if not None, plot on this preexisting axis

• figsize (tuple) – if ax is None, create new figure with size (width, height)

• color (string) – color of the footprints

• alpha (float) – opacity of the footprints

• bgcolor (string) – background color of the plot

• bbox (tuple) – bounding box as (north, south, east, west). if None, will calculate from
the spatial extents of the geometries in gdf

• save (bool) – if True, save the figure to disk at filepath

• show (bool) – if True, call pyplot.show() to show the figure

• close (bool) – if True, call pyplot.close() to close the figure

• filepath (string) – if save is True, the path to the file. file format determined from
extension. if None, use settings.imgs_folder/image.png

• dpi (int) – if save is True, the resolution of saved file

Returns fig, ax – matplotlib figure, axis

Return type tuple

osmnx.plot.plot_graph(G, ax=None, figsize=(8, 8), bgcolor='#111111', node_color='w',
node_size=15, node_alpha=None, node_edgecolor='none', node_zorder=1,
edge_color='#999999', edge_linewidth=1, edge_alpha=None, show=True,
close=False, save=False, filepath=None, dpi=300, bbox=None)

Plot a graph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• ax (matplotlib axis) – if not None, plot on this preexisting axis

• figsize (tuple) – if ax is None, create new figure with size (width, height)

• bgcolor (string) – background color of plot

• node_color (string or list) – color(s) of the nodes

• node_size (int) – size of the nodes: if 0, then skip plotting the nodes

• node_alpha (float) – opacity of the nodes, note: if you passed RGBA values to
node_color, set node_alpha=None to use the alpha channel in node_color

• node_edgecolor (string) – color of the nodes’ markers’ borders

• node_zorder (int) – zorder to plot nodes: edges are always 1, so set node_zorder=0 to
plot nodes below edges

• edge_color (string or list) – color(s) of the edges’ lines

• edge_linewidth (float) – width of the edges’ lines: if 0, then skip plotting the edges

• edge_alpha (float) – opacity of the edges, note: if you passed RGBA values to
edge_color, set edge_alpha=None to use the alpha channel in edge_color

• show (bool) – if True, call pyplot.show() to show the figure

3.1. User reference 29

OSMnx Documentation, Release 1.1.1

• close (bool) – if True, call pyplot.close() to close the figure

• save (bool) – if True, save the figure to disk at filepath

• filepath (string) – if save is True, the path to the file. file format determined from
extension. if None, use settings.imgs_folder/image.png

• dpi (int) – if save is True, the resolution of saved file

• bbox (tuple) – bounding box as (north, south, east, west). if None, will calculate from
spatial extents of plotted geometries.

Returns fig, ax – matplotlib figure, axis

Return type tuple

osmnx.plot.plot_graph_route(G, route, route_color='r', route_linewidth=4, route_alpha=0.5,
orig_dest_size=100, ax=None, **pg_kwargs)

Plot a route along a graph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• route (list) – route as a list of node IDs

• route_color (string) – color of the route

• route_linewidth (int) – width of the route line

• route_alpha (float) – opacity of the route line

• orig_dest_size (int) – size of the origin and destination nodes

• ax (matplotlib axis) – if not None, plot route on this preexisting axis instead of
creating a new fig, ax and drawing the underlying graph

• pg_kwargs – keyword arguments to pass to plot_graph

Returns fig, ax – matplotlib figure, axis

Return type tuple

osmnx.plot.plot_graph_routes(G, routes, route_colors='r', route_linewidths=4, **pgr_kwargs)
Plot several routes along a graph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• routes (list) – routes as a list of lists of node IDs

• route_colors (string or list) – if string, 1 color for all routes. if list, the colors
for each route.

• route_linewidths (int or list) – if int, 1 linewidth for all routes. if list, the
linewidth for each route.

• pgr_kwargs – keyword arguments to pass to plot_graph_route

Returns fig, ax – matplotlib figure, axis

Return type tuple

30 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

3.1.12 osmnx.projection module

Project spatial geometries and spatial networks.

osmnx.projection.is_projected(crs)
Determine if a coordinate reference system is projected or not.

This is a convenience wrapper around the pyproj.CRS.is_projected function.

Parameters crs (string or pyproj.CRS) – the coordinate reference system

Returns projected – True if crs is projected, otherwise False

Return type bool

osmnx.projection.project_gdf(gdf, to_crs=None, to_latlong=False)
Project a GeoDataFrame from its current CRS to another.

If to_crs is None, project to the UTM CRS for the UTM zone in which the GeoDataFrame’s centroid lies.
Otherwise project to the CRS defined by to_crs. The simple UTM zone calculation in this function works well
for most latitudes, but may not work for some extreme northern locations like Svalbard or far northern Norway.

Parameters

• gdf (geopandas.GeoDataFrame) – the GeoDataFrame to be projected

• to_crs (string or pyproj.CRS) – if None, project to UTM zone in which gdf’s
centroid lies, otherwise project to this CRS

• to_latlong (bool) – if True, project to settings.default_crs and ignore to_crs

Returns gdf_proj – the projected GeoDataFrame

Return type geopandas.GeoDataFrame

osmnx.projection.project_geometry(geometry, crs=None, to_crs=None, to_latlong=False)
Project a shapely geometry from its current CRS to another.

If to_crs is None, project to the UTM CRS for the UTM zone in which the geometry’s centroid lies. Otherwise
project to the CRS defined by to_crs.

Parameters

• geometry (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon) – the geometry to project

• crs (string or pyproj.CRS) – the starting CRS of the passed-in geometry. if None,
it will be set to settings.default_crs

• to_crs (string or pyproj.CRS) – if None, project to UTM zone in which geome-
try’s centroid lies, otherwise project to this CRS

• to_latlong (bool) – if True, project to settings.default_crs and ignore to_crs

Returns geometry_proj, crs – the projected geometry and its new CRS

Return type tuple

osmnx.projection.project_graph(G, to_crs=None)
Project graph from its current CRS to another.

If to_crs is None, project the graph to the UTM CRS for the UTM zone in which the graph’s centroid lies.
Otherwise, project the graph to the CRS defined by to_crs.

Parameters

• G (networkx.MultiDiGraph) – the graph to be projected

3.1. User reference 31

OSMnx Documentation, Release 1.1.1

• to_crs (string or pyproj.CRS) – if None, project graph to UTM zone in which
graph centroid lies, otherwise project graph to this CRS

Returns G_proj – the projected graph

Return type networkx.MultiDiGraph

3.1.13 osmnx.settings module

Global settings that can be configured by user with utils.config().

3.1.14 osmnx.simplification module

Simplify, correct, and consolidate network topology.

osmnx.simplification.consolidate_intersections(G, tolerance=10, rebuild_graph=True,
dead_ends=False, recon-
nect_edges=True)

Consolidate intersections comprising clusters of nearby nodes.

Merges nearby nodes and returns either their centroids or a rebuilt graph with consolidated intersections and
reconnected edge geometries. The tolerance argument should be adjusted to approximately match street design
standards in the specific street network, and you should always use a projected graph to work in meaningful and
consistent units like meters.

When rebuild_graph=False, it uses a purely geometrical (and relatively fast) algorithm to identify “geometrically
close” nodes, merge them, and return just the merged intersections’ centroids. When rebuild_graph=True, it
uses a topological (and slower but more accurate) algorithm to identify “topologically close” nodes, merge
them, then rebuild/return the graph. Returned graph’s node IDs represent clusters rather than osmids. Refer to
nodes’ osmid_original attributes for original osmids. If multiple nodes were merged together, the osmid_original
attribute is a list of merged nodes’ osmids.

Divided roads are often represented by separate centerline edges. The intersection of two divided roads thus
creates 4 nodes, representing where each edge intersects a perpendicular edge. These 4 nodes represent a single
intersection in the real world. A similar situation occurs with roundabouts and traffic circles. This function
consolidates nearby nodes by buffering them to an arbitrary distance, merging overlapping buffers, and taking
their centroid.

Parameters

• G (networkx.MultiDiGraph) – a projected graph

• tolerance (float) – nodes are buffered to this distance (in graph’s geometry’s units)
and subsequent overlaps are dissolved into a single node

• rebuild_graph (bool) – if True, consolidate the nodes topologically, rebuild the graph,
and return as networkx.MultiDiGraph. if False, consolidate the nodes geometrically and
return the consolidated node points as geopandas.GeoSeries

• dead_ends (bool) – if False, discard dead-end nodes to return only street-intersection
points

• reconnect_edges (bool) – ignored if rebuild_graph is not True. if True, reconnect
edges and their geometries in rebuilt graph to the consolidated nodes and update edge length
attributes; if False, returned graph has no edges (which is faster if you just need topologically
consolidated intersection counts).

32 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

Returns if rebuild_graph=True, returns MultiDiGraph with consolidated intersections and recon-
nected edge geometries. if rebuild_graph=False, returns GeoSeries of shapely Points represent-
ing the centroids of street intersections

Return type networkx.MultiDiGraph or geopandas.GeoSeries

osmnx.simplification.simplify_graph(G, strict=True, remove_rings=True)
Simplify a graph’s topology by removing interstitial nodes.

Simplifies graph topology by removing all nodes that are not intersections or dead-ends. Create an edge directly
between the end points that encapsulate them, but retain the geometry of the original edges, saved as a new
geometry attribute on the new edge. Note that only simplified edges receive a geometry attribute. Some of the
resulting consolidated edges may comprise multiple OSM ways, and if so, their multiple attribute values are
stored as a list.

Parameters

• G (networkx.MultiDiGraph) – input graph

• strict (bool) – if False, allow nodes to be end points even if they fail all other rules
but have incident edges with different OSM IDs. Lets you keep nodes at elbow two-way
intersections, but sometimes individual blocks have multiple OSM IDs within them too.

• remove_rings (bool) – if True, remove isolated self-contained rings that have no end-
points

Returns G – topologically simplified graph, with a new geometry attribute on each simplified edge

Return type networkx.MultiDiGraph

3.1.15 osmnx.speed module

Calculate graph edge speeds and travel times.

osmnx.speed.add_edge_speeds(G, hwy_speeds=None, fallback=None, precision=1)
Add edge speeds (km per hour) to graph as new speed_kph edge attributes.

Imputes free-flow travel speeds for all edges based on mean maxspeed value of edges, per highway type. For
highway types in graph that have no maxspeed value on any edge, function assigns the mean of all maxspeed
values in graph.

This mean-imputation can obviously be imprecise, and the caller can override it by passing in hwy_speeds and/or
fallback arguments that correspond to local speed limit standards.

If edge maxspeed attribute has “mph” in it, value will automatically be converted from miles per hour to km
per hour. Any other speed units should be manually converted to km per hour prior to running this function,
otherwise there could be unexpected results. If “mph” does not appear in the edge’s maxspeed attribute string,
then function assumes kph, per OSM guidelines: https://wiki.openstreetmap.org/wiki/Map_Features/Units

Parameters

• G (networkx.MultiDiGraph) – input graph

• hwy_speeds (dict) – dict keys = OSM highway types and values = typical speeds (km
per hour) to assign to edges of that highway type for any edges missing speed data. Any
edges with highway type not in hwy_speeds will be assigned the mean preexisting speed
value of all edges of that highway type.

• fallback (numeric) – default speed value (km per hour) to assign to edges whose
highway type did not appear in hwy_speeds and had no preexisting speed values on any
edge

3.1. User reference 33

https://wiki.openstreetmap.org/wiki/Map_Features/Units

OSMnx Documentation, Release 1.1.1

• precision (int) – decimal precision to round speed_kph

Returns G – graph with speed_kph attributes on all edges

Return type networkx.MultiDiGraph

osmnx.speed.add_edge_travel_times(G, precision=1)
Add edge travel time (seconds) to graph as new travel_time edge attributes.

Calculates free-flow travel time along each edge, based on length and speed_kph attributes. Note: run
add_edge_speeds first to generate the speed_kph attribute. All edges must have length and speed_kph attributes
and all their values must be non-null.

Parameters

• G (networkx.MultiDiGraph) – input graph

• precision (int) – decimal precision to round travel_time

Returns G – graph with travel_time attributes on all edges

Return type networkx.MultiDiGraph

3.1.16 osmnx.stats module

Calculate geometric and topological network measures.

This module defines streets as the edges in an undirected representation of the graph. Using undirected graph edges
prevents double-counting bidirectional edges of a two-way street, but may double-count a divided road’s separate
centerlines with different end point nodes. If clean_periphery=True when the graph was created (which is the default
parameterization), then you will get accurate node degrees (and in turn streets-per-node counts) even at the periphery
of the graph.

You can use NetworkX directly for additional topological network measures.

osmnx.stats.basic_stats(G, area=None, clean_int_tol=None, clean_intersects=None, toler-
ance=None, circuity_dist=None)

Calculate basic descriptive geometric and topological measures of a graph.

Density measures are only calculated if area is provided and clean intersection measures are only calculated if
clean_int_tol is provided.

Parameters

• G (networkx.MultiDiGraph) – input graph

• area (float) – if not None, calculate density measures and use this area value (in square
meters) as the denominator

• clean_int_tol (float) – if not None, calculate consolidated intersections count (and
density, if area is also provided) and use this tolerance value; refer to the simplifica-
tion.consolidate_intersections function documentation for details

• clean_intersects (bool) – deprecated, do not use

• tolerance (float) – deprecated, do not use

• circuity_dist (string) – deprecated, do not use

Returns

stats –

dictionary containing the following attributes

34 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

• circuity_avg - see circuity_avg function documentation

• clean_intersection_count - see clean_intersection_count function documentation

• clean_intersection_density_km - clean_intersection_count per sq km

• edge_density_km - edge_length_total per sq km

• edge_length_avg - edge_length_total / m

• edge_length_total - see edge_length_total function documentation

• intersection_count - see intersection_count function documentation

• intersection_density_km - intersection_count per sq km

• k_avg - graph’s average node degree (in-degree and out-degree)

• m - count of edges in graph

• n - count of nodes in graph

• node_density_km - n per sq km

• self_loop_proportion - see self_loop_proportion function documentation

• street_density_km - street_length_total per sq km

• street_length_avg - street_length_total / street_segment_count

• street_length_total - see street_length_total function documentation

• street_segment_count - see street_segment_count function documentation

• streets_per_node_avg - see streets_per_node_avg function documentation

• streets_per_node_counts - see streets_per_node_counts function documentation

• streets_per_node_proportions - see streets_per_node_proportions function documenta-
tion

Return type dict

osmnx.stats.circuity_avg(Gu)
Calculate average street circuity using edges of undirected graph.

Circuity is the sum of edge lengths divided by the sum of straight-line distances between edge endpoints. Cal-
culates straight-line distance as euclidean distance if projected or great-circle distance if unprojected.

Parameters Gu (networkx.MultiGraph) – undirected input graph

Returns circuity_avg – the graph’s average undirected edge circuity

Return type float

osmnx.stats.edge_length_total(G)
Calculate graph’s total edge length.

Parameters G (networkx.MultiDiGraph) – input graph

Returns length – total length (meters) of edges in graph

Return type float

osmnx.stats.extended_stats(G, connectivity=False, anc=False, ecc=False, bc=False, cc=False)
Do not use: deprecated and will be removed in a future release.

Parameters

• G (networkx.MultiDiGraph) – deprecated

3.1. User reference 35

OSMnx Documentation, Release 1.1.1

• connectivity (bool) – deprecated

• anc (bool) – deprecated

• ecc (bool) – deprecated

• bc (bool) – deprecated

• cc (bool) – deprecated

Returns

Return type dict

osmnx.stats.intersection_count(G=None, min_streets=2)
Count the intersections in a graph.

Intersections are defined as nodes with at least min_streets number of streets incident on them.

Parameters

• G (networkx.MultiDiGraph) – input graph

• min_streets (int) – a node must have at least min_streets incident on them to count as
an intersection

Returns count – count of intersections in graph

Return type int

osmnx.stats.self_loop_proportion(Gu)
Calculate percent of edges that are self-loops in a graph.

A self-loop is defined as an edge from node u to node v where u==v.

Parameters Gu (networkx.MultiGraph) – undirected input graph

Returns proportion – proportion of graph edges that are self-loops

Return type float

osmnx.stats.street_length_total(Gu)
Calculate graph’s total street segment length.

Parameters Gu (networkx.MultiGraph) – undirected input graph

Returns length – total length (meters) of streets in graph

Return type float

osmnx.stats.street_segment_count(Gu)
Count the street segments in a graph.

Parameters Gu (networkx.MultiGraph) – undirected input graph

Returns count – count of street segments in graph

Return type int

osmnx.stats.streets_per_node(G)
Count streets (undirected edges) incident on each node.

Parameters G (networkx.MultiDiGraph) – input graph

Returns spn – dictionary with node ID keys and street count values

Return type dict

36 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

osmnx.stats.streets_per_node_avg(G)
Calculate graph’s average count of streets per node.

Parameters G (networkx.MultiDiGraph) – input graph

Returns spna – average count of streets per node

Return type float

osmnx.stats.streets_per_node_counts(G)
Calculate streets-per-node counts.

Parameters G (networkx.MultiDiGraph) – input graph

Returns spnc – dictionary keyed by count of streets incident on each node, and with values of how
many nodes in the graph have this count

Return type dict

osmnx.stats.streets_per_node_proportions(G)
Calculate streets-per-node proportions.

Parameters G (networkx.MultiDiGraph) – input graph

Returns spnp – dictionary keyed by count of streets incident on each node, and with values of what
proportion of nodes in the graph have this count

Return type dict

3.1.17 osmnx.truncate module

Truncate graph by distance, bounding box, or polygon.

osmnx.truncate.truncate_graph_bbox(G, north, south, east, west, truncate_by_edge=False, re-
tain_all=False, quadrat_width=0.05, min_num=3)

Remove every node in graph that falls outside a bounding box.

Parameters

• G (networkx.MultiDiGraph) – input graph

• north (float) – northern latitude of bounding box

• south (float) – southern latitude of bounding box

• east (float) – eastern longitude of bounding box

• west (float) – western longitude of bounding box

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one
of node’s neighbors is within the bounding box

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

• quadrat_width (numeric) – passed on to intersect_index_quadrats: the linear length
(in degrees) of the quadrats with which to cut up the geometry (default = 0.05, approx 4km
at NYC’s latitude)

• min_num (int) – passed on to intersect_index_quadrats: the minimum number of linear
quadrat lines (e.g., min_num=3 would produce a quadrat grid of 4 squares)

Returns G – the truncated graph

Return type networkx.MultiDiGraph

3.1. User reference 37

OSMnx Documentation, Release 1.1.1

osmnx.truncate.truncate_graph_dist(G, source_node, max_dist=1000, weight='length', re-
tain_all=False)

Remove every node farther than some network distance from source_node.

This function can be slow for large graphs, as it must calculate shortest path distances between source_node and
every other graph node.

Parameters

• G (networkx.MultiDiGraph) – input graph

• source_node (int) – the node in the graph from which to measure network distances to
other nodes

• max_dist (int) – remove every node in the graph greater than this distance from the
source_node (along the network)

• weight (string) – how to weight the graph when measuring distance (default ‘length’
is how many meters long the edge is)

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

Returns G – the truncated graph

Return type networkx.MultiDiGraph

osmnx.truncate.truncate_graph_polygon(G, polygon, retain_all=False, trun-
cate_by_edge=False, quadrat_width=0.05,
min_num=3)

Remove every node in graph that falls outside a (Multi)Polygon.

Parameters

• G (networkx.MultiDiGraph) – input graph

• polygon (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon) – only retain nodes in graph that lie within this geometry

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside boundary polygon if at least
one of node’s neighbors is within the polygon

• quadrat_width (numeric) – passed on to intersect_index_quadrats: the linear length
(in degrees) of the quadrats with which to cut up the geometry (default = 0.05, approx 4km
at NYC’s latitude)

• min_num (int) – passed on to intersect_index_quadrats: the minimum number of linear
quadrat lines (e.g., min_num=3 would produce a quadrat grid of 4 squares)

Returns G – the truncated graph

Return type networkx.MultiDiGraph

38 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

3.1.18 osmnx.utils module

General utility functions.

osmnx.utils.citation()
Print the OSMnx package’s citation information.

Boeing, G. 2017. OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Com-
plex Street Networks. Computers, Environment and Urban Systems, 65, 126-139. https://doi.org/10.1016/j.
compenvurbsys.2017.05.004

Returns

Return type None

osmnx.utils.config(all_oneway=False, bidirectional_network_types=['walk'], cache_folder='./cache',
cache_only_mode=False, data_folder='./data', default_accept_language='en',
default_access='["access"!~"private"]', default_crs='epsg:4326', de-
fault_referer='OSMnx Python package (https://github.com/gboeing/osmnx)',
default_user_agent='OSMnx Python package (https://github.com/gboeing/osmnx)',
elevation_provider='google', imgs_folder='./images', log_console=False,
log_file=False, log_filename='osmnx', log_level=20, log_name='OSMnx',
logs_folder='./logs', max_query_area_size=2500000000, memory=None,
nominatim_endpoint='https://nominatim.openstreetmap.org/', nomina-
tim_key=None, osm_xml_node_attrs=['id', 'timestamp', 'uid', 'user',
'version', 'changeset', 'lat', 'lon'], osm_xml_node_tags=['highway'],
osm_xml_way_attrs=['id', 'timestamp', 'uid', 'user', 'version', 'changeset'],
osm_xml_way_tags=['highway', 'lanes', 'maxspeed', 'name', 'oneway'],
overpass_endpoint='https://overpass-api.de/api', overpass_rate_limit=True,
overpass_settings='[out:json][timeout:{timeout}]{maxsize}', timeout=180,
use_cache=True, useful_tags_node=['ref', 'highway'], useful_tags_way=['bridge',
'tunnel', 'oneway', 'lanes', 'ref', 'name', 'highway', 'maxspeed', 'service', 'access',
'area', 'landuse', 'width', 'est_width', 'junction'])

Configure OSMnx by setting the default global settings’ values.

Any parameters not passed by the caller are (re-)set to their original default values.

Parameters

• all_oneway (bool) – Only use if specifically saving to .osm XML file with
save_graph_xml function. if True, forces all ways to be loaded as oneway ways, preserving
the original order of nodes stored in the OSM way XML. This also retains original OSM
string values for oneway attribute values, rather than converting them to a True/False bool.

• bidirectional_network_types (list) – network types for which a fully bidirec-
tional graph will be created

• cache_folder (string or pathlib.Path) – path to folder in which to save/load
HTTP response cache

• data_folder (string or pathlib.Path) – path to folder in which to save/load
graph files by default

• cache_only_mode (bool) – If True, download network data from Overpass then raise a
CacheOnlyModeInterrupt error for user to catch. This prevents graph building from taking
place and instead just saves OSM response data to cache. Useful for sequentially caching
lots of raw data (as you can only query Overpass one request at a time) then using the cache
to quickly build many graphs simultaneously with multiprocessing.

• default_accept_language (string) – HTTP header accept-language

3.1. User reference 39

https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1016/j.compenvurbsys.2017.05.004

OSMnx Documentation, Release 1.1.1

• default_access (string) – default filter for OSM “access” key

• default_crs (string) – default coordinate reference system to set when creating
graphs

• default_referer (string) – HTTP header referer

• default_user_agent (string) – HTTP header user-agent

• elevation_provider (string {"google", "airmap"}) – the API provider to
use for adding node elevations

• imgs_folder (string or pathlib.Path) – path to folder in which to save plot
images by default

• log_file (bool) – if True, save log output to a file in logs_folder

• log_filename (string) – name of the log file, without file extension

• log_console (bool) – if True, print log output to the console (terminal window)

• log_level (int) – one of Python’s logger.level constants

• log_name (string) – name of the logger

• logs_folder (string or pathlib.Path) – path to folder in which to save log
files

• max_query_area_size (int) – maximum area for any part of the geometry in meters:
any polygon bigger than this will get divided up for multiple queries to API (default 50km
x 50km)

• memory (int) – Overpass server memory allocation size for the query, in bytes. If None,
server will use its default allocation size. Use with caution.

• nominatim_endpoint (string) – base API endpoint to use for nominatim queries

• nominatim_key (string) – your API key, if you are using an endpoint that requires
one

• osm_xml_node_attrs (list) – node attributes for saving .osm XML files with
save_graph_xml function

• osm_xml_node_tags (list) – node tags for saving .osm XML files with
save_graph_xml function

• osm_xml_way_attrs (list) – edge attributes for saving .osm XML files with
save_graph_xml function

• osm_xml_way_tags (list) – edge tags for for saving .osm XML files with
save_graph_xml function

• overpass_endpoint (string) – base API endpoint to use for overpass queries

• overpass_rate_limit (bool) – if True, check the overpass server status endpoint for
how long to pause before making request. Necessary if server uses slot management, but
can be set to False if you are running your own overpass instance.

• overpass_settings (string) – Settings string for overpass queries.
For example, to query historical OSM data as of a certain date:
'[out:json][timeout:90][date:"2019-10-28T19:20:00Z"]'. Use
with caution.

• timeout (int) – the timeout interval for the HTTP request and for API to use while
running the query

40 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

• use_cache (bool) – if True, cache HTTP responses locally instead of calling API re-
peatedly for the same request

• useful_tags_node (list) – OSM “node” tags to add as graph node attributes, when
present

• useful_tags_way (list) – OSM “way” tags to add as graph edge attributes, when
present

Returns

Return type None

osmnx.utils.log(message, level=None, name=None, filename=None)
Write a message to the logger.

This logs to file and/or prints to the console (terminal), depending on the current configuration of settings.log_file
and settings.log_console.

Parameters

• message (string) – the message to log

• level (int) – one of Python’s logger.level constants

• name (string) – name of the logger

• filename (string) – name of the log file, without file extension

Returns

Return type None

osmnx.utils.ts(style='datetime', template=None)
Get current timestamp as string.

Parameters

• style (string {"datetime", "date", "time"}) – format the timestamp with
this built-in template

• template (string) – if not None, format the timestamp with this template instead of
one of the built-in styles

Returns ts – the string timestamp

Return type string

3.1.19 osmnx.utils_geo module

Geospatial utility functions.

osmnx.utils_geo.bbox_from_point(point, dist=1000, project_utm=False, return_crs=False)
Create a bounding box from a (lat, lng) center point.

Create a bounding box some distance in each direction (north, south, east, and west) from the center point and
optionally project it.

Parameters

• point (tuple) – the (lat, lng) center point to create the bounding box around

• dist (int) – bounding box distance in meters from the center point

• project_utm (bool) – if True, return bounding box as UTM-projected coordinates

3.1. User reference 41

OSMnx Documentation, Release 1.1.1

• return_crs (bool) – if True, and project_utm=True, return the projected CRS too

Returns (north, south, east, west) or (north, south, east, west, crs_proj)

Return type tuple

osmnx.utils_geo.bbox_to_poly(north, south, east, west)
Convert bounding box coordinates to shapely Polygon.

Parameters

• north (float) – northern coordinate

• south (float) – southern coordinate

• east (float) – eastern coordinate

• west (float) – western coordinate

Returns

Return type shapely.geometry.Polygon

osmnx.utils_geo.interpolate_points(geom, dist)
Interpolate evenly spaced points along a LineString.

The spacing is approximate because the LineString’s length may not be evenly divisible by it.

Parameters

• geom (shapely.geometry.LineString) – a LineString geometry

• dist (float) – spacing distance between interpolated points, in same units as geom.
smaller values generate more points.

Yields points (generator) – a generator of (x, y) tuples of the interpolated points’ coordinates

osmnx.utils_geo.redistribute_vertices(geom, dist)
Do not use, deprecated.

Parameters

• geom (shapely.geometry.LineString or shapely.geometry.
MultiLineString) – deprecated, do not use

• dist (float) – deprecated, do not use

Returns

Return type list or shapely.geometry.MultiLineString

osmnx.utils_geo.round_geometry_coords(geom, precision)
Round the coordinates of a shapely geometry to some decimal precision.

Parameters

• geom (shapely.geometry.geometry {Point, MultiPoint,
LineString, MultiLineString, Polygon, MultiPolygon}) – the
geometry to round the coordinates of

• precision (int) – decimal precision to round coordinates to

Returns

Return type shapely.geometry.geometry

42 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

osmnx.utils_geo.sample_points(G, n)
Randomly sample points constrained to a spatial graph.

This generates a graph-constrained uniform random sample of points. Unlike typical spatially uniform random
sampling, this method accounts for the graph’s geometry. And unlike equal-length edge segmenting, this method
guarantees uniform randomness.

Parameters

• G (networkx.MultiGraph) – graph to sample points from; should be undirected (to not
oversample bidirectional edges) and projected (for accurate point interpolation)

• n (int) – how many points to sample

Returns points – the sampled points, multi-indexed by (u, v, key) of the edge from which each point
was drawn

Return type geopandas.GeoSeries

3.1.20 osmnx.utils_graph module

Graph utility functions.

osmnx.utils_graph.count_streets_per_node(G, nodes=None)
Count how many physical street segments connect to each node in a graph.

This function uses an undirected representation of the graph and special handling of self-loops to accu-
rately count physical streets rather than directed edges. Note: this function is automatically run by all
the graph.graph_from_x functions prior to truncating the graph to the requested boundaries, to add accurate
street_count attributes to each node even if some of its neighbors are outside the requested graph boundaries.

Parameters

• G (networkx.MultiDiGraph) – input graph

• nodes (list) – which node IDs to get counts for. if None, use all graph nodes, otherwise
calculate counts only for these node IDs

Returns streets_per_node – counts of how many physical streets connect to each node, with keys
= node ids and values = counts

Return type dict

osmnx.utils_graph.get_digraph(G, weight='length')
Convert MultiDiGraph to DiGraph.

Chooses between parallel edges by minimizing weight attribute value. Note: see also get_undirected to convert
MultiDiGraph to MultiGraph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• weight (string) – attribute value to minimize when choosing between parallel edges

Returns

Return type networkx.DiGraph

osmnx.utils_graph.get_largest_component(G, strongly=False)
Get subgraph of G’s largest weakly/strongly connected component.

Parameters

• G (networkx.MultiDiGraph) – input graph

3.1. User reference 43

OSMnx Documentation, Release 1.1.1

• strongly (bool) – if True, return the largest strongly instead of weakly connected com-
ponent

Returns G – the largest connected component subgraph of the original graph

Return type networkx.MultiDiGraph

osmnx.utils_graph.get_route_edge_attributes(G, route, attribute=None, mini-
mize_key='length', retrieve_default=None)

Get a list of attribute values for each edge in a path.

Parameters

• G (networkx.MultiDiGraph) – input graph

• route (list) – list of nodes IDs constituting the path

• attribute (string) – the name of the attribute to get the value of for each edge. If
None, the complete data dict is returned for each edge.

• minimize_key (string) – if there are parallel edges between two nodes, select the one
with the lowest value of minimize_key

• retrieve_default (Callable[Tuple[Any, Any], Any]) – function called
with the edge nodes as parameters to retrieve a default value, if the edge does not contain
the given attribute (otherwise a KeyError is raised)

Returns attribute_values – list of edge attribute values

Return type list

osmnx.utils_graph.get_undirected(G)
Convert MultiDiGraph to undirected MultiGraph.

Maintains parallel edges only if their geometries differ. Note: see also get_digraph to convert MultiDiGraph to
DiGraph.

Parameters G (networkx.MultiDiGraph) – input graph

Returns

Return type networkx.MultiGraph

osmnx.utils_graph.graph_from_gdfs(gdf_nodes, gdf_edges, graph_attrs=None)
Convert node and edge GeoDataFrames to a MultiDiGraph.

This function is the inverse of graph_to_gdfs and is designed to work in conjunction with it.

However, you can convert arbitrary node and edge GeoDataFrames as long as 1) gdf_nodes is uniquely indexed
by osmid, 2) gdf_nodes contains x and y coordinate columns representing node geometries, 3) gdf_edges is
uniquely multi-indexed by u, v, key (following normal MultiDiGraph structure). This allows you to load any
node/edge shapefiles or GeoPackage layers as GeoDataFrames then convert them to a MultiDiGraph for graph
analysis. Note that any geometry attribute on gdf_nodes is discarded since x and y provide the necessary node
geometry information instead.

Parameters

• gdf_nodes (geopandas.GeoDataFrame) – GeoDataFrame of graph nodes uniquely
indexed by osmid

• gdf_edges (geopandas.GeoDataFrame) – GeoDataFrame of graph edges uniquely
multi-indexed by u, v, key

• graph_attrs (dict) – the new G.graph attribute dict. if None, use crs from gdf_edges
as the only graph-level attribute (gdf_edges must have crs attribute set)

44 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

Returns G

Return type networkx.MultiDiGraph

osmnx.utils_graph.graph_to_gdfs(G, nodes=True, edges=True, node_geometry=True,
fill_edge_geometry=True)

Convert a MultiDiGraph to node and/or edge GeoDataFrames.

This function is the inverse of graph_from_gdfs.

Parameters

• G (networkx.MultiDiGraph) – input graph

• nodes (bool) – if True, convert graph nodes to a GeoDataFrame and return it

• edges (bool) – if True, convert graph edges to a GeoDataFrame and return it

• node_geometry (bool) – if True, create a geometry column from node x and y attributes

• fill_edge_geometry (bool) – if True, fill in missing edge geometry fields using
nodes u and v

Returns gdf_nodes or gdf_edges or tuple of (gdf_nodes, gdf_edges). gdf_nodes is indexed by osmid
and gdf_edges is multi-indexed by u, v, key following normal MultiDiGraph structure.

Return type geopandas.GeoDataFrame or tuple

osmnx.utils_graph.remove_isolated_nodes(G)
Remove from a graph all nodes that have no incident edges.

Parameters G (networkx.MultiDiGraph) – graph from which to remove isolated nodes

Returns G – graph with all isolated nodes removed

Return type networkx.MultiDiGraph

3.2 Internals reference

This is the complete OSMnx internals reference, including private internal functions. If you are looking for the user
reference to OSMnx’s public-facing API, you can find it here.

3.2.1 osmnx.bearing module

Calculate graph edge bearings.

osmnx.bearing._bearings_distribution(Gu, num_bins, min_length=0, weight=None)
Compute distribution of bearings across evenly spaced bins.

Prevents bin-edge effects around common values like 0° and 90° by initially creating twice as many bins as
desired, then merging them in pairs. For example, if num_bins=36 is provided, then each bin will represent 10°
around the compass, with the first bin representing 355°-5°.

Parameters

• Gu (networkx.MultiGraph) – undirected, unprojected graph with bearing attributes
on each edge

• num_bins (int) – number of bins for the bearings histogram

• min_length (float) – ignore edges with length attributes less than min_length; useful
to ignore the noise of many very short edges

3.2. Internals reference 45

osmnx.html

OSMnx Documentation, Release 1.1.1

• weight (string) – if not None, weight edges’ bearings by this (non-null) edge attribute.
for example, if “length” is provided, this will return 1 bearing observation per meter per
street, which could result in a very large bearings array.

Returns bin_counts, bin_edges – counts of bearings per bin and the bins edges

Return type tuple of numpy.array

osmnx.bearing._extract_edge_bearings(Gu, min_length=0, weight=None)
Extract undirected graph’s bidirectional edge bearings.

For example, if an edge has a bearing of 90° then we will record bearings of both 90° and 270° for this edge.

Parameters

• Gu (networkx.MultiGraph) – undirected, unprojected graph with bearing attributes
on each edge

• min_length (float) – ignore edges with length attributes less than min_length; useful
to ignore the noise of many very short edges

• weight (string) – if not None, weight edges’ bearings by this (non-null) edge attribute.
for example, if “length” is provided, this will return 1 bearing observation per meter per
street, which could result in a very large bearings array.

Returns bearings – the graph’s bidirectional edge bearings

Return type numpy.array

osmnx.bearing.add_edge_bearings(G, precision=1)
Add compass bearing attributes to all graph edges.

Vectorized function to calculate (initial) bearing from origin node to destination node for each edge in a directed,
unprojected graph then add these bearings as new edge attributes. Bearing represents angle in degrees (clock-
wise) between north and the geodesic line from from the origin node to the destination node. Ignores self-loop
edges as their bearings are undefined.

Parameters

• G (networkx.MultiDiGraph) – unprojected graph

• precision (int) – decimal precision to round bearing

Returns G – graph with edge bearing attributes

Return type networkx.MultiDiGraph

osmnx.bearing.calculate_bearing(lat1, lng1, lat2, lng2)
Calculate the compass bearing(s) between pairs of lat-lng points.

Vectorized function to calculate (initial) bearings between two points’ coordinates or between arrays of points’
coordinates. Expects coordinates in decimal degrees. Bearing represents angle in degrees (clockwise) between
north and the geodesic line from point 1 to point 2.

Parameters

• lat1 (float or numpy.array of float) – first point’s latitude coordinate

• lng1 (float or numpy.array of float) – first point’s longitude coordinate

• lat2 (float or numpy.array of float) – second point’s latitude coordinate

• lng2 (float or numpy.array of float) – second point’s longitude coordinate

Returns bearing – the bearing(s) in decimal degrees

Return type float or numpy.array of float

46 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

osmnx.bearing.get_bearing(origin_point, destination_point)
Do not use, deprecated.

Parameters

• origin_point (tuple) – deprecated, do not use

• destination_point (tuple) – deprecated, do not use

Returns bearing – deprecated, do not use

Return type float

osmnx.bearing.orientation_entropy(Gu, num_bins=36, min_length=0, weight=None)
Calculate undirected graph’s orientation entropy.

Orientation entropy is the entropy of its edges’ bidirectional bearings across evenly spaced bins. Ignores self-
loop edges as their bearings are undefined.

Parameters

• Gu (networkx.MultiGraph) – undirected, unprojected graph with bearing attributes
on each edge

• num_bins (int) – number of bins; for example, if num_bins=36 is provided, then each
bin will represent 10° around the compass

• min_length (float) – ignore edges with length attributes less than min_length; useful
to ignore the noise of many very short edges

• weight (string) – if not None, weight edges’ bearings by this (non-null) edge attribute.
for example, if “length” is provided, this will return 1 bearing observation per meter per
street, which could result in a very large bearings array.

Returns entropy – the graph’s orientation entropy

Return type float

osmnx.bearing.plot_orientation(Gu, num_bins=36, min_length=0, weight=None, ax=None,
figsize=(5, 5), area=True, color='#003366', edgecolor='k',
linewidth=0.5, alpha=0.7, title=None, title_y=1.05, ti-
tle_font=None, xtick_font=None)

Plot a polar histogram of a spatial network’s bidirectional edge bearings.

Ignores self-loop edges as their bearings are undefined.

For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network Orientation, Configuration, and
Entropy.” Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1

Parameters

• Gu (networkx.MultiGraph) – undirected, unprojected graph with bearing attributes
on each edge

• num_bins (int) – number of bins; for example, if num_bins=36 is provided, then each
bin will represent 10° around the compass

• min_length (float) – ignore edges with length attributes less than min_length

• weight (string) – if not None, weight edges’ bearings by this (non-null) edge attribute

• ax (matplotlib.axes.PolarAxesSubplot) – if not None, plot on this preexisting
axis; must have projection=polar

• figsize (tuple) – if ax is None, create new figure with size (width, height)

3.2. Internals reference 47

https://doi.org/10.1007/s41109-019-0189-1

OSMnx Documentation, Release 1.1.1

• area (bool) – if True, set bar length so area is proportional to frequency, otherwise set
bar length so height is proportional to frequency

• color (string) – color of histogram bars

• edgecolor (string) – color of histogram bar edges

• linewidth (float) – width of histogram bar edges

• alpha (float) – opacity of histogram bars

• title (string) – title for plot

• title_y (float) – y position to place title

• title_font (dict) – the title’s fontdict to pass to matplotlib

• xtick_font (dict) – the xtick labels’ fontdict to pass to matplotlib

Returns fig, ax – matplotlib figure, axis

Return type tuple

3.2.2 osmnx.distance module

Calculate distances and shortest paths and find nearest node/edge(s) to point(s).

osmnx.distance._single_shortest_path(G, orig, dest, weight)
Solve the shortest path from an origin node to a destination node.

This function is a convenience wrapper around networkx.shortest_path, with exception handling for unsolvable
paths.

Parameters

• G (networkx.MultiDiGraph) – input graph

• orig (int) – origin node ID

• dest (int) – destination node ID

• weight (string) – edge attribute to minimize when solving shortest path

Returns path – list of node IDs constituting the shortest path

Return type list

osmnx.distance.add_edge_lengths(G, precision=3)
Add length attribute (in meters) to each edge.

Vectorized function to calculate great-circle distance between each edge’s incident nodes. Ensure graph is
in unprojected coordinates, and unsimplified to get accurate distances. Note: this function is run by all the
graph.graph_from_x functions automatically to add length attributes to all edges.

Parameters

• G (networkx.MultiDiGraph) – unprojected, unsimplified input graph

• precision (int) – decimal precision to round lengths

Returns G – graph with edge length attributes

Return type networkx.MultiDiGraph

48 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

osmnx.distance.euclidean_dist_vec(y1, x1, y2, x2)
Calculate Euclidean distances between pairs of points.

Vectorized function to calculate the Euclidean distance between two points’ coordinates or between arrays of
points’ coordinates. For accurate results, use projected coordinates rather than decimal degrees.

Parameters

• y1 (float or numpy.array of float) – first point’s y coordinate

• x1 (float or numpy.array of float) – first point’s x coordinate

• y2 (float or numpy.array of float) – second point’s y coordinate

• x2 (float or numpy.array of float) – second point’s x coordinate

Returns dist – distance from each (x1, y1) to each (x2, y2) in coordinates’ units

Return type float or numpy.array of float

osmnx.distance.get_nearest_edge(G, point, return_geom=False, return_dist=False)
Do not use, deprecated.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• point (tuple) – deprecated, do not use

• return_geom (bool) – deprecated, do not use

• return_dist (bool) – deprecated, do not use

Returns

Return type tuple

osmnx.distance.get_nearest_edges(G, X, Y, method=None, dist=None)
Do not use, deprecated.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• X (list-like) – deprecated, do not use

• Y (list-like) – deprecated, do not use

• method (string) – deprecated, do not use

• dist (float) – deprecated, do not use

Returns

Return type numpy.array

osmnx.distance.get_nearest_node(G, point, method=None, return_dist=False)
Do not use, deprecated.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• point (tuple) – deprecated, do not use

• method (string) – deprecated, do not use

• return_dist (bool) – deprecated, do not use

Returns

3.2. Internals reference 49

OSMnx Documentation, Release 1.1.1

Return type int or tuple

osmnx.distance.get_nearest_nodes(G, X, Y, method=None, return_dist=False)
Do not use, deprecated.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• X (list) – deprecated, do not use

• Y (list) – deprecated, do not use

• method (string) – deprecated, do not use

• return_dist (bool) – deprecated, do not use

Returns

Return type numpy.array or tuple of numpy.array

osmnx.distance.great_circle_vec(lat1, lng1, lat2, lng2, earth_radius=6371009)
Calculate great-circle distances between pairs of points.

Vectorized function to calculate the great-circle distance between two points’ coordinates or between arrays of
points’ coordinates using the haversine formula. Expects coordinates in decimal degrees.

Parameters

• lat1 (float or numpy.array of float) – first point’s latitude coordinate

• lng1 (float or numpy.array of float) – first point’s longitude coordinate

• lat2 (float or numpy.array of float) – second point’s latitude coordinate

• lng2 (float or numpy.array of float) – second point’s longitude coordinate

• earth_radius (float) – earth’s radius in units in which distance will be returned (de-
fault is meters)

Returns dist – distance from each (lat1, lng1) to each (lat2, lng2) in units of earth_radius

Return type float or numpy.array of float

osmnx.distance.k_shortest_paths(G, orig, dest, k, weight='length')
Solve k shortest paths from an origin node to a destination node.

See also shortest_path to get just the one shortest path.

Parameters

• G (networkx.MultiDiGraph) – input graph

• orig (int) – origin node ID

• dest (int) – destination node ID

• k (int) – number of shortest paths to get

• weight (string) – edge attribute to minimize when solving shortest paths. default is
edge length in meters.

Returns paths – a generator of k shortest paths ordered by total weight. each path is a list of node
IDs.

Return type generator

50 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

osmnx.distance.nearest_edges(G, X, Y, interpolate=None, return_dist=False)
Find the nearest edge to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest edge to that point. If X and Y are lists of
coordinate values, this will return the nearest edge to each point.

If interpolate is None, search for the nearest edge to each point, one at a time, using an r-tree and minimizing
the euclidean distances from the point to the possible matches. For accuracy, use a projected graph and points.
This method is precise and also fastest if searching for few points relative to the graph’s size.

For a faster method if searching for many points relative to the graph’s size, use the interpolate argument to
interpolate points along the edges and index them. If the graph is projected, this uses a k-d tree for euclidean
nearest neighbor search, which requires that scipy is installed as an optional dependency. If graph is unprojected,
this uses a ball tree for haversine nearest neighbor search, which requires that scikit-learn is installed as an
optional dependency.

Parameters

• G (networkx.MultiDiGraph) – graph in which to find nearest edges

• X (float or list) – points’ x (longitude) coordinates, in same CRS/units as graph and
containing no nulls

• Y (float or list) – points’ y (latitude) coordinates, in same CRS/units as graph and
containing no nulls

• interpolate (float) – spacing distance between interpolated points, in same units as
graph. smaller values generate more points.

• return_dist (bool) – optionally also return distance between points and nearest edges

Returns ne or (ne, dist) – nearest edges as (u, v, key) or optionally a tuple where dist contains
distances between the points and their nearest edges

Return type tuple or list

osmnx.distance.nearest_nodes(G, X, Y, return_dist=False)
Find the nearest node to a point or to each of several points.

If X and Y are single coordinate values, this will return the nearest node to that point. If X and Y are lists of
coordinate values, this will return the nearest node to each point.

If the graph is projected, this uses a k-d tree for euclidean nearest neighbor search, which requires that scipy
is installed as an optional dependency. If it is unprojected, this uses a ball tree for haversine nearest neighbor
search, which requires that scikit-learn is installed as an optional dependency.

Parameters

• G (networkx.MultiDiGraph) – graph in which to find nearest nodes

• X (float or list) – points’ x (longitude) coordinates, in same CRS/units as graph and
containing no nulls

• Y (float or list) – points’ y (latitude) coordinates, in same CRS/units as graph and
containing no nulls

• return_dist (bool) – optionally also return distance between points and nearest nodes

Returns nn or (nn, dist) – nearest node IDs or optionally a tuple where dist contains distances
between the points and their nearest nodes

Return type int/list or tuple

3.2. Internals reference 51

OSMnx Documentation, Release 1.1.1

osmnx.distance.shortest_path(G, orig, dest, weight='length', cpus=1)
Solve shortest path from origin node(s) to destination node(s).

If orig and dest are single node IDs, this will return a list of the nodes constituting the shortest path between
them. If orig and dest are lists of node IDs, this will return a list of lists of the nodes constituting the shortest
path between each origin-destination pair. If a path cannot be solved, this will return None for that path. You
can parallelize solving multiple paths with the cpus parameter, but be careful to not exceed your available RAM.

See also k_shortest_paths to solve multiple shortest paths between a single origin and destination. For additional
functionality or different solver algorithms, use NetworkX directly.

Parameters

• G (networkx.MultiDiGraph) – input graph

• orig (int or list) – origin node ID, or a list of origin node IDs

• dest (int or list) – destination node ID, or a list of destination node IDs

• weight (string) – edge attribute to minimize when solving shortest path

• cpus (int) – how many CPU cores to use; if None, use all available

Returns path – list of node IDs constituting the shortest path, or, if orig and dest are lists, then a list
of path lists

Return type list

3.2.3 osmnx.downloader module

Interact with the OSM APIs.

osmnx.downloader._config_dns(url)
Force socket.getaddrinfo to use IP address instead of host.

Resolves the URL’s domain to an IP address so that we use the same server for both 1) checking the necessary
pause duration and 2) sending the query itself even if there is round-robin redirecting among multiple server
machines on the server-side. Mutates the getaddrinfo function so it uses the same IP address everytime it finds
the host name in the URL.

For example, the domain overpass-api.de just redirects to one of its subdomains (currently z.overpass-api.de and
lz4.overpass-api.de). So if we check the status endpoint of overpass-api.de, we may see results for subdomain
z, but when we submit the query itself it gets redirected to subdomain lz4. This could result in violating server
lz4’s slot management timing.

Parameters url (string) – the URL to consistently resolve the IP address of

Returns

Return type None

osmnx.downloader._create_overpass_query(polygon_coord_str, tags)
Create an overpass query string based on passed tags.

Parameters

• polygon_coord_str (list) – list of lat lng coordinates

• tags (dict) – dict of tags used for finding elements in the selected area

Returns query

Return type string

52 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

osmnx.downloader._get_http_headers(user_agent=None, referer=None, ac-
cept_language=None)

Update the default requests HTTP headers with OSMnx info.

Parameters

• user_agent (string) – the user agent string, if None will set with OSMnx default

• referer (string) – the referer string, if None will set with OSMnx default

• accept_language (string) – make accept-language explicit e.g. for consistent nom-
inatim result sorting

Returns headers

Return type dict

osmnx.downloader._get_osm_filter(network_type)
Create a filter to query OSM for the specified network type.

Parameters network_type (string {"all_private", "all", "bike",
"drive", "drive_service", "walk"}) – what type of street network to get

Returns

Return type string

osmnx.downloader._get_pause(base_endpoint, recursive_delay=5, default_duration=60)
Get a pause duration from the Overpass API status endpoint.

Check the Overpass API status endpoint to determine how long to wait until the next slot is available. You can
disable this via the ox.config function’s overpass_rate_limit argument.

Parameters

• base_endpoint (string) – base Overpass API endpoint (without “/status” at the end)

• recursive_delay (int) – how long to wait between recursive calls if the server is
currently running a query

• default_duration (int) – if fatal error, fall back on returning this value

Returns pause

Return type int

osmnx.downloader._make_overpass_polygon_coord_strs(polygon)
Subdivide query polygon and return list of coordinate strings.

Project to utm, divide polygon up into sub-polygons if area exceeds a max size (in meters), project back to
lat-lng, then get a list of polygon(s) exterior coordinates

Parameters polygon (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon) – geographic boundaries to fetch the OSM geometries within

Returns polygon_coord_strs – list of exterior coordinate strings for smaller sub-divided polygons

Return type list

osmnx.downloader._make_overpass_settings()
Make settings string to send in Overpass query.

Returns

Return type string

osmnx.downloader._osm_geometries_download(polygon, tags)
Retrieve non-networked elements within boundary from the Overpass API.

3.2. Internals reference 53

OSMnx Documentation, Release 1.1.1

Parameters

• polygon (shapely.geometry.Polygon) – boundaries to fetch elements within

• tags (dict) – dict of tags used for finding elements in the selected area

Returns response_jsons – list of JSON responses from the Overpass server

Return type list

osmnx.downloader._osm_network_download(polygon, network_type, custom_filter)
Retrieve networked ways and nodes within boundary from the Overpass API.

Parameters

• polygon (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon) – boundary to fetch the network ways/nodes within

• network_type (string) – what type of street network to get if custom_filter is None

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets

Returns response_jsons – list of JSON responses from the Overpass server

Return type list

osmnx.downloader._osm_place_download(query, by_osmid=False, limit=1, polygon_geojson=1)
Retrieve a place from the Nominatim API.

Parameters

• query (string or dict) – query string or structured query dict

• by_osmid (bool) – if True, handle query as an OSM ID for lookup rather than text search

• limit (int) – max number of results to return

• polygon_geojson (int) – retrieve the place’s geometry from the API, 0=no, 1=yes

Returns response_json – JSON response from the Nominatim server

Return type dict

osmnx.downloader._retrieve_from_cache(url, check_remark=False)
Retrieve a HTTP response JSON object from the cache, if it exists.

Parameters

• url (string) – the URL of the request

• check_remark (string) – if True, only return filepath if cached response does not have
a remark key indicating a server warning

Returns response_json – cached response for url if it exists in the cache, otherwise None

Return type dict

osmnx.downloader._save_to_cache(url, response_json, sc)
Save a HTTP response JSON object to a file in the cache folder.

Function calculates the checksum of url to generate the cache file’s name. If the request was sent to server via
POST instead of GET, then URL should be a GET-style representation of request. Response is only saved to a
cache file if settings.use_cache is True, response_json is not None, and sc = 200.

Users should always pass OrderedDicts instead of dicts of parameters into request functions, so the parameters
remain in the same order each time, producing the same URL string, and thus the same hash. Otherwise the

54 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

cache will eventually contain multiple saved responses for the same request because the URL’s parameters
appeared in a different order each time.

Parameters

• url (string) – the URL of the request

• response_json (dict) – the JSON response

• sc (int) – the response’s HTTP status code

Returns

Return type None

osmnx.downloader._url_in_cache(url)
Determine if a URL’s response exists in the cache.

Calculates the checksum of url to determine the cache file’s name.

Parameters url (string) – the URL to look for in the cache

Returns filepath – path to cached response for url if it exists, otherwise None

Return type pathlib.Path

osmnx.downloader.nominatim_request(params, request_type='search', pause=1, er-
ror_pause=60)

Send a HTTP GET request to the Nominatim API and return JSON response.

Parameters

• params (OrderedDict) – key-value pairs of parameters

• request_type (string {"search", "reverse", "lookup"}) – which
Nominatim API endpoint to query

• pause (int) – how long to pause before request, in seconds. per the nominatim usage
policy: “an absolute maximum of 1 request per second” is allowed

• error_pause (int) – how long to pause in seconds before re-trying request if error

Returns response_json

Return type dict

osmnx.downloader.overpass_request(data, pause=None, error_pause=60)
Send a HTTP POST request to the Overpass API and return JSON response.

Parameters

• data (OrderedDict) – key-value pairs of parameters

• pause (int) – how long to pause in seconds before request, if None, will query API status
endpoint to find when next slot is available

• error_pause (int) – how long to pause in seconds (in addition to pause) before re-
trying request if error

Returns response_json

Return type dict

3.2. Internals reference 55

OSMnx Documentation, Release 1.1.1

3.2.4 osmnx.elevation module

Get node elevations and calculate edge grades.

osmnx.elevation._query_raster(nodes, filepath, band)
Query a raster for values at coordinates in a DataFrame’s x/y columns.

Parameters

• nodes (pandas.DataFrame) – DataFrame indexed by node ID and with two columns:
x and y

• filepath (string or pathlib.Path) – path to the raster file or VRT to query

• band (int) – which raster band to query

Returns nodes_values – zipped node IDs and corresponding raster values

Return type zip

osmnx.elevation.add_edge_grades(G, add_absolute=True, precision=3)
Add grade attribute to each graph edge.

Vectorized function to calculate the directed grade (ie, rise over run) for each edge in the graph and add it to the
edge as an attribute. Nodes must already have elevation attributes to use this function.

See also the add_node_elevations function.

Parameters

• G (networkx.MultiDiGraph) – input graph with elevation node attribute

• add_absolute (bool) – if True, also add absolute value of grade as grade_abs attribute

• precision (int) – decimal precision to round grade values

Returns G – graph with edge grade (and optionally grade_abs) attributes

Return type networkx.MultiDiGraph

osmnx.elevation.add_node_elevations(G, api_key, max_locations_per_batch=350,
pause_duration=0, precision=3)

Do not use, deprecated, will be removed in a future release.

This function and the elevation_provider setting are deprecated.

Parameters

• G (networkx.MultiDiGraph) – deprecated, do not use

• api_key (string) – deprecated, do not use

• max_locations_per_batch (int) – deprecated, do not use

• pause_duration (float) – deprecated, do not use

• precision (int) – deprecated, do not use

Returns G

Return type networkx.MultiDiGraph

osmnx.elevation.add_node_elevations_google(G, api_key, max_locations_per_batch=350,
pause_duration=0, precision=3)

Add elevation (meters) attribute to each node using a web service.

This uses the Google Maps Elevation API and requires an API key. For a free, local alternative, see the
add_node_elevations_raster function. See also the add_edge_grades function.

56 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

Parameters

• G (networkx.MultiDiGraph) – input graph

• api_key (string) – a Google Maps Elevation API key

• max_locations_per_batch (int) – max number of coordinate pairs to submit in
each API call (if this is too high, the server will reject the request because its character limit
exceeds the max allowed)

• pause_duration (float) – time to pause between API calls, which can be increased
if you get rate limited

• precision (int) – decimal precision to round elevation values

Returns G – graph with node elevation attributes

Return type networkx.MultiDiGraph

osmnx.elevation.add_node_elevations_raster(G, filepath, band=1, cpus=None)
Add elevation attribute to each node from local raster file(s).

If filepath is a list of paths, this will generate a virtual raster composed of the files at those paths as an interme-
diate step.

Parameters

• G (networkx.MultiDiGraph) – input graph, in same CRS as raster

• filepath (string or pathlib.Path or list of strings/Paths) –
path (or list of paths) to the raster file(s) to query

• band (int) – which raster band to query

• cpus (int) – how many CPU cores to use; if None, use all available

Returns G – graph with node elevation attributes

Return type networkx.MultiDiGraph

3.2.5 osmnx.folium module

Create interactive Leaflet web maps of graphs and routes via folium.

osmnx.folium._make_folium_polyline(geom, popup_val=None, **kwargs)
Turn LineString geometry into a folium PolyLine with attributes.

Parameters

• geom (shapely LineString) – geometry of the line

• popup_val (string) – text to display in pop-up when a line is clicked, if None, no
popup

• kwargs – keyword arguments to pass to folium.PolyLine()

Returns pl

Return type folium.PolyLine

osmnx.folium._plot_folium(gdf, m, popup_attribute, tiles, zoom, fit_bounds, **kwargs)
Plot a GeoDataFrame of LineStrings on a folium map object.

Parameters

3.2. Internals reference 57

OSMnx Documentation, Release 1.1.1

• gdf (geopandas.GeoDataFrame) – a GeoDataFrame of LineString geometries and
attributes

• m (folium.folium.Map or folium.FeatureGroup) – if not None, plot on this
preexisting folium map object

• popup_attribute (string) – attribute to display in pop-up on-click, if None, no
popup

• tiles (string) – name of a folium tileset

• zoom (int) – initial zoom level for the map

• fit_bounds (bool) – if True, fit the map to gdf’s boundaries

• kwargs – keyword arguments to pass to folium.PolyLine()

Returns m

Return type folium.folium.Map

osmnx.folium.plot_graph_folium(G, graph_map=None, popup_attribute=None,
tiles='cartodbpositron', zoom=1, fit_bounds=True,
edge_color=None, edge_width=None, edge_opacity=None,
**kwargs)

Plot a graph as an interactive Leaflet web map.

Note that anything larger than a small city can produce a large web map file that is slow to render in your
browser.

Parameters

• G (networkx.MultiDiGraph) – input graph

• graph_map (folium.folium.Map) – if not None, plot the graph on this preexisting
folium map object

• popup_attribute (string) – edge attribute to display in a pop-up when an edge is
clicked

• tiles (string) – name of a folium tileset

• zoom (int) – initial zoom level for the map

• fit_bounds (bool) – if True, fit the map to the boundaries of the graph’s edges

• edge_color (string) – deprecated, do not use, use kwargs instead

• edge_width (numeric) – deprecated, do not use, use kwargs instead

• edge_opacity (numeric) – deprecated, do not use, use kwargs instead

• kwargs – keyword arguments to pass to folium.PolyLine(), see folium docs for options
(for example color=”#333333”, weight=5, opacity=0.7)

Returns

Return type folium.folium.Map

osmnx.folium.plot_route_folium(G, route, route_map=None, popup_attribute=None,
tiles='cartodbpositron', zoom=1, fit_bounds=True,
route_color=None, route_width=None, route_opacity=None,
**kwargs)

Plot a route as an interactive Leaflet web map.

Parameters

58 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

• G (networkx.MultiDiGraph) – input graph

• route (list) – the route as a list of nodes

• route_map (folium.folium.Map) – if not None, plot the route on this preexisting
folium map object

• popup_attribute (string) – edge attribute to display in a pop-up when an edge is
clicked

• tiles (string) – name of a folium tileset

• zoom (int) – initial zoom level for the map

• fit_bounds (bool) – if True, fit the map to the boundaries of the route’s edges

• route_color (string) – deprecated, do not use, use kwargs instead

• route_width (numeric) – deprecated, do not use, use kwargs instead

• route_opacity (numeric) – deprecated, do not use, use kwargs instead

• kwargs – keyword arguments to pass to folium.PolyLine(), see folium docs for options
(for example color=”#cc0000”, weight=5, opacity=0.7)

Returns

Return type folium.folium.Map

3.2.6 osmnx.geocoder module

Geocode queries and create GeoDataFrames of place boundaries.

osmnx.geocoder._geocode_query_to_gdf(query, which_result, by_osmid)
Geocode a single place query to a GeoDataFrame.

Parameters

• query (string or dict) – query string or structured dict to geocode

• which_result (int) – which geocoding result to use. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one. to get the top match regardless
of geometry type, set which_result=1

• by_osmid (bool) – if True, handle query as an OSM ID for lookup rather than text search

Returns gdf – a GeoDataFrame with one row containing the result of geocoding

Return type geopandas.GeoDataFrame

osmnx.geocoder._get_first_polygon(results, query)
Choose first result of geometry type (Multi)Polygon from list of results.

Parameters

• results (list) – list of results from downloader._osm_place_download

• query (str) – the query string or structured dict that was geocoded

Returns result – the chosen result

Return type dict

osmnx.geocoder.geocode(query)
Geocode a query string to (lat, lng) with the Nominatim geocoder.

Parameters query (string) – the query string to geocode

3.2. Internals reference 59

OSMnx Documentation, Release 1.1.1

Returns point – the (lat, lng) coordinates returned by the geocoder

Return type tuple

osmnx.geocoder.geocode_to_gdf(query, which_result=None, by_osmid=False, buffer_dist=None)
Retrieve place(s) by name or ID from the Nominatim API as a GeoDataFrame.

You can query by place name or OSM ID. If querying by place name, the query argument can be a string or
structured dict, or a list of such strings/dicts to send to geocoder. You can instead query by OSM ID by setting
by_osmid=True. In this case, geocode_to_gdf treats the query argument as an OSM ID (or list of OSM IDs) for
Nominatim lookup rather than text search. OSM IDs must be prepended with their types: node (N), way (W),
or relation (R), in accordance with the Nominatim format. For example, query=[“R2192363”, “N240109189”,
“W427818536”].

If query argument is a list, then which_result should be either a single value or a list with the same length
as query. The queries you provide must be resolvable to places in the Nominatim database. The resulting
GeoDataFrame’s geometry column contains place boundaries if they exist in OpenStreetMap.

Parameters

• query (string or dict or list) – query string(s) or structured dict(s) to geocode

• which_result (int) – which geocoding result to use. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one. to get the top match regardless
of geometry type, set which_result=1

• by_osmid (bool) – if True, handle query as an OSM ID for lookup rather than text search

• buffer_dist (float) – distance to buffer around the place geometry, in meters

Returns gdf – a GeoDataFrame with one row for each query

Return type geopandas.GeoDataFrame

3.2.7 osmnx.geometries module

Download geospatial entities’ geometries and attributes from OpenStreetMap.

Retrieve points of interest, building footprints, or any other objects from OSM, including their geometries and attribute
data, and construct a GeoDataFrame of them. You can use this module to query for nodes, ways, and relations (the
latter of type “multipolygon” or “boundary” only) by passing a dictionary of desired tags/values.

osmnx.geometries._assemble_multipolygon_component_polygons(element, geometries)
Assemble a MultiPolygon from its component LineStrings and Polygons.

The OSM wiki suggests an algorithm for assembling multipolygon geometries https://wiki.openstreetmap.org/
wiki/Relation:multipolygon/Algorithm. This method takes a simpler approach relying on the accurate tagging
of component ways with ‘inner’ and ‘outer’ roles as required on this page https://wiki.openstreetmap.org/wiki/
Relation:multipolygon.

Parameters

• element (dict) – element type “relation” from overpass response JSON

• geometries (dict) – dict containing all linestrings and polygons generated from OSM
ways

Returns geometry – a single MultiPolygon object

Return type shapely.geometry.MultiPolygon

60 Chapter 3. User reference

https://wiki.openstreetmap.org/wiki/Relation:multipolygon/Algorithm
https://wiki.openstreetmap.org/wiki/Relation:multipolygon/Algorithm
https://wiki.openstreetmap.org/wiki/Relation:multipolygon
https://wiki.openstreetmap.org/wiki/Relation:multipolygon

OSMnx Documentation, Release 1.1.1

osmnx.geometries._buffer_invalid_geometries(gdf)
Buffer any invalid geometries remaining in the GeoDataFrame.

Invalid geometries in the GeoDataFrame (which may accurately reproduce invalid geometries in Open-
StreetMap) can cause the filtering to the query polygon and other subsequent geometric operations to fail. This
function logs the ids of the invalid geometries and applies a buffer of zero to try to make them valid.

Note: the resulting geometries may differ from the originals - please check them against OpenStreetMap

Parameters gdf (geopandas.GeoDataFrame) – a GeoDataFrame with possibly invalid ge-
ometries

Returns gdf – the GeoDataFrame with .buffer(0) applied to invalid geometries

Return type geopandas.GeoDataFrame

osmnx.geometries._create_gdf(response_jsons, polygon, tags)
Parse JSON responses from the Overpass API to a GeoDataFrame.

Note: the polygon and tags arguments can both be None and the GeoDataFrame will still be created but it won’t
be filtered at the end i.e. the final GeoDataFrame will contain all tagged geometries in the response_jsons.

Parameters

• response_jsons (list) – list of JSON responses from from the Overpass API

• polygon (shapely.geometry.Polygon) – geographic boundary used for filtering
the final GeoDataFrame

• tags (dict) – dict of tags used for filtering the final GeoDataFrame

Returns gdf – GeoDataFrame of geometries and their associated tags

Return type geopandas.GeoDataFrame

osmnx.geometries._filter_gdf_by_polygon_and_tags(gdf, polygon, tags)
Filter the GeoDataFrame to the requested bounding polygon and tags.

Filters GeoDataFrame to query polygon and tags. Removes columns of all NaNs (that held values only in rows
removed by the filters). Resets the index of GeoDataFrame, writing it into a new column called ‘unique_id’.

Parameters

• gdf (geopandas.GeoDataFrame) – the GeoDataFrame to filter

• polygon (shapely.geometry.Polygon) – polygon defining the boundary of the
requested area

• tags (dict) – the tags requested

Returns gdf – final filtered GeoDataFrame

Return type geopandas.GeoDataFrame

3.2. Internals reference 61

OSMnx Documentation, Release 1.1.1

osmnx.geometries._is_closed_way_a_polygon(element, polygon_features={'aeroway': {'poly-
gon': 'blocklist', 'values': ['taxiway']}, 'amenity':
{'polygon': 'all'}, 'area': {'polygon': 'all'},
'area:highway': {'polygon': 'all'}, 'barrier':
{'polygon': 'passlist', 'values': ['city_wall',
'ditch', 'hedge', 'retaining_wall', 'spikes']},
'boundary': {'polygon': 'all'}, 'building': {'poly-
gon': 'all'}, 'building:part': {'polygon': 'all'},
'craft': {'polygon': 'all'}, 'golf': {'polygon':
'all'}, 'highway': {'polygon': 'passlist', 'val-
ues': ['services', 'rest_area', 'escape', 'eleva-
tor']}, 'historic': {'polygon': 'all'}, 'indoor':
{'polygon': 'all'}, 'landuse': {'polygon': 'all'},
'leisure': {'polygon': 'all'}, 'man_made': {'poly-
gon': 'blocklist', 'values': ['cutline', 'em-
bankment', 'pipeline']}, 'military': {'polygon':
'all'}, 'natural': {'polygon': 'blocklist', 'values':
['coastline', 'cliff', 'ridge', 'arete', 'tree_row']},
'office': {'polygon': 'all'}, 'place': {'poly-
gon': 'all'}, 'power': {'polygon': 'passlist', 'val-
ues': ['plant', 'substation', 'generator', 'trans-
former']}, 'public_transport': {'polygon': 'all'},
'railway': {'polygon': 'passlist', 'values': ['sta-
tion', 'turntable', 'roundhouse', 'platform']}, 'ru-
ins': {'polygon': 'all'}, 'shop': {'polygon': 'all'},
'tourism': {'polygon': 'all'}, 'waterway': {'poly-
gon': 'passlist', 'values': ['riverbank', 'dock',
'boatyard', 'dam']}})

Determine whether a closed OSM way represents a Polygon, not a LineString.

Closed OSM ways may represent LineStrings (e.g. a roundabout or hedge round a field) or Polygons (e.g. a
building footprint or land use area) depending on the tags applied to them.

The starting assumption is that it is not a polygon, however any polygon type tagging will return a polygon
unless explicitly tagged with area:no.

It is possible for a single closed OSM way to have both LineString and Polygon type tags (e.g. both barrier=fence
and landuse=agricultural). OSMnx will return a single Polygon for elements tagged in this way. For more
information see: https://wiki.openstreetmap.org/wiki/One_feature,_one_OSM_element)

Parameters

• element (dict) – closed element type “way” from overpass response JSON

• polygon_features (dict) – dict of tag keys with associated values and block-
list/passlist

Returns is_polygon – True if the tags are for a polygon type geometry

Return type bool

osmnx.geometries._parse_node_to_coords(element)
Parse coordinates from a node in the overpass response.

The coords are only used to create LineStrings and Polygons.

Parameters element (dict) – element type “node” from overpass response JSON

Returns coords – dict of latitude/longitude coordinates

Return type dict

62 Chapter 3. User reference

https://wiki.openstreetmap.org/wiki/One_feature,_one_OSM_element

OSMnx Documentation, Release 1.1.1

osmnx.geometries._parse_node_to_point(element)
Parse point from a tagged node in the overpass response.

The points are geometries in their own right.

Parameters element (dict) – element type “node” from overpass response JSON

Returns point – dict of OSM ID, OSM element type, tags and geometry

Return type dict

osmnx.geometries._parse_relation_to_multipolygon(element, geometries)
Parse multipolygon from OSM relation (type:MultiPolygon).

See more information about relations from OSM documentation: http://wiki.openstreetmap.org/wiki/Relation

Parameters

• element (dict) – element type “relation” from overpass response JSON

• geometries (dict) – dict containing all linestrings and polygons generated from OSM
ways

Returns multipolygon – dict of tags and geometry for a single multipolygon

Return type dict

3.2. Internals reference 63

http://wiki.openstreetmap.org/wiki/Relation

OSMnx Documentation, Release 1.1.1

osmnx.geometries._parse_way_to_linestring_or_polygon(element, coords, poly-
gon_features={'aeroway':
{'polygon': 'blocklist', 'val-
ues': ['taxiway']}, 'amenity':
{'polygon': 'all'}, 'area': {'poly-
gon': 'all'}, 'area:highway':
{'polygon': 'all'}, 'barrier':
{'polygon': 'passlist', 'values':
['city_wall', 'ditch', 'hedge',
'retaining_wall', 'spikes']},
'boundary': {'polygon': 'all'},
'building': {'polygon': 'all'},
'building:part': {'polygon':
'all'}, 'craft': {'polygon':
'all'}, 'golf': {'polygon':
'all'}, 'highway': {'polygon':
'passlist', 'values': ['services',
'rest_area', 'escape', 'eleva-
tor']}, 'historic': {'polygon':
'all'}, 'indoor': {'polygon':
'all'}, 'landuse': {'polygon':
'all'}, 'leisure': {'polygon':
'all'}, 'man_made': {'polygon':
'blocklist', 'values': ['cutline',
'embankment', 'pipeline']},
'military': {'polygon': 'all'},
'natural': {'polygon': 'block-
list', 'values': ['coastline', 'cliff',
'ridge', 'arete', 'tree_row']},
'office': {'polygon': 'all'},
'place': {'polygon': 'all'},
'power': {'polygon': 'passlist',
'values': ['plant', 'substation',
'generator', 'transformer']},
'public_transport': {'polygon':
'all'}, 'railway': {'polygon':
'passlist', 'values': ['station',
'turntable', 'roundhouse', 'plat-
form']}, 'ruins': {'polygon':
'all'}, 'shop': {'polygon':
'all'}, 'tourism': {'polygon':
'all'}, 'waterway': {'polygon':
'passlist', 'values': ['riverbank',
'dock', 'boatyard', 'dam']}})

Parse open LineString, closed LineString or Polygon from OSM ‘way’.

Please see https://wiki.openstreetmap.org/wiki/Overpass_turbo/Polygon_Features for more information on
which tags should be parsed to polygons

Parameters

• element (dict) – element type “way” from overpass response JSON

• coords (dict) – dict of node IDs and their latitude/longitude coordinates

• polygon_features (dict) – dict for determining whether closed ways are LineStrings
or Polygons

64 Chapter 3. User reference

https://wiki.openstreetmap.org/wiki/Overpass_turbo/Polygon_Features

OSMnx Documentation, Release 1.1.1

Returns linestring_or_polygon – dict of OSM ID, OSM element type, nodes, tags and geometry

Return type dict

osmnx.geometries._subtract_inner_polygons_from_outer_polygons(element,
outer_polygons,
inner_polygons)

Subtract inner polygons from outer polygons.

Creates a Polygon or MultiPolygon with holes.

Parameters

• element (dict) – element type “relation” from overpass response JSON

• outer_polygons (list) – list of outer polygons that are part of a multipolygon

• inner_polygons (list) – list of inner polygons that are part of a multipolygon

Returns geometry – a single Polygon or MultiPolygon

Return type shapely.geometry.Polygon or shapely.geometry.MultiPolygon

osmnx.geometries.geometries_from_address(address, tags, dist=1000)
Create GeoDataFrame of OSM entities within some distance N, S, E, W of address.

Parameters

• address (string) – the address to geocode and use as the central point around which to
get the geometries

• tags (dict) – Dict of tags used for finding objects in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

• dist (numeric) – distance in meters

Returns gdf

Return type geopandas.GeoDataFrame

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.geometries.geometries_from_bbox(north, south, east, west, tags)
Create a GeoDataFrame of OSM entities within a N, S, E, W bounding box.

Parameters

• north (float) – northern latitude of bounding box

• south (float) – southern latitude of bounding box

• east (float) – eastern longitude of bounding box

• west (float) – western longitude of bounding box

3.2. Internals reference 65

OSMnx Documentation, Release 1.1.1

• tags (dict) – Dict of tags used for finding objects in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

Returns gdf

Return type geopandas.GeoDataFrame

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.geometries.geometries_from_place(query, tags, which_result=None, buffer_dist=None)
Create GeoDataFrame of OSM entities within boundaries of geocodable place(s).

The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does
not have a polygon for this place, you can instead get geometries within it using the geometries_from_address
function, which geocodes the place name to a point and gets the geometries within some distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding it, try to vary the query string, pass
in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the
OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to
the geometries_from_polygon function.

Parameters

• query (string or dict or list) – the query or queries to geocode to get place
boundary polygon(s)

• tags (dict) – Dict of tags used for finding objects in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

• which_result (int) – which geocoding result to use. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one.

• buffer_dist (float) – distance to buffer around the place geometry, in meters

Returns gdf

Return type geopandas.GeoDataFrame

66 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.geometries.geometries_from_point(center_point, tags, dist=1000)
Create GeoDataFrame of OSM entities within some distance N, S, E, W of a point.

Parameters

• center_point (tuple) – the (lat, lng) center point around which to get the geometries

• tags (dict) – Dict of tags used for finding objects in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

• dist (numeric) – distance in meters

Returns gdf

Return type geopandas.GeoDataFrame

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.geometries.geometries_from_polygon(polygon, tags)
Create GeoDataFrame of OSM entities within boundaries of a (multi)polygon.

Parameters

• polygon (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon) – geographic boundaries to fetch geometries within

• tags (dict) – Dict of tags used for finding objects in the selected area. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

Returns gdf

Return type geopandas.GeoDataFrame

3.2. Internals reference 67

OSMnx Documentation, Release 1.1.1

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.geometries.geometries_from_xml(filepath, polygon=None, tags=None)
Create a GeoDataFrame of OSM entities in an OSM-formatted XML file.

Because this function creates a GeoDataFrame of geometries from an OSM-formatted XML file that has already
been downloaded (i.e. no query is made to the Overpass API) the polygon and tags arguments are not required.
If they are not supplied to the function, geometries_from_xml() will return geometries for all of the tagged
elements in the file. If they are supplied they will be used to filter the final GeoDataFrame.

Parameters

• filepath (string or pathlib.Path) – path to file containing OSM XML data

• polygon (shapely.geometry.Polygon) – optional geographic boundary to filter
objects

• tags (dict) – optional dict of tags for filtering objects from the XML. Results returned
are the union, not intersection of each individual tag. Each result matches at least one given
tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict
values should be either True to retrieve all items with the given tag, or a string to get a
single tag-value combination, or a list of strings to get multiple values for the given tag. For
example, tags = {‘building’: True} would return all building footprints in the area. tags =
{‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all
amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

Returns gdf

Return type geopandas.GeoDataFrame

3.2.8 osmnx.graph module

Graph creation functions.

osmnx.graph._add_paths(G, paths, bidirectional=False)
Add a list of paths to the graph as edges.

Parameters

• G (networkx.MultiDiGraph) – graph to add paths to

• paths (list) – list of paths’ tag:value attribute data dicts

• bidirectional (bool) – if True, create bi-directional edges for one-way streets

Returns

Return type None

osmnx.graph._convert_node(element)
Convert an OSM node element into the format for a networkx node.

Parameters element (dict) – an OSM node element

Returns node

Return type dict

osmnx.graph._convert_path(element)
Convert an OSM way element into the format for a networkx path.

68 Chapter 3. User reference

tag:value

OSMnx Documentation, Release 1.1.1

Parameters element (dict) – an OSM way element

Returns path

Return type dict

osmnx.graph._create_graph(response_jsons, retain_all=False, bidirectional=False)
Create a networkx MultiDiGraph from Overpass API responses.

Adds length attributes in meters (great-circle distance between endpoints) to all of the graph’s (pre-simplified,
straight-line) edges via the distance.add_edge_lengths function.

Parameters

• response_jsons (list) – list of dicts of JSON responses from from the Overpass API

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

• bidirectional (bool) – if True, create bi-directional edges for one-way streets

Returns G

Return type networkx.MultiDiGraph

osmnx.graph._is_path_one_way(path, bidirectional, oneway_values)
Determine if a path of nodes allows travel in only one direction.

Parameters

• path (dict) – a path’s tag:value attribute data

• bidirectional (bool) – whether this is a bi-directional network type

• oneway_values (set) – the values OSM uses in its ‘oneway’ tag to denote True

Returns

Return type bool

osmnx.graph._is_path_reversed(path, reversed_values)
Determine if the order of nodes in a path should be reversed.

Parameters

• path (dict) – a path’s tag:value attribute data

• reversed_values (set) – the values OSM uses in its ‘oneway’ tag to denote travel can
only occur in the opposite direction of the node order

Returns

Return type bool

osmnx.graph._parse_nodes_paths(response_json)
Construct dicts of nodes and paths from an Overpass response.

Parameters response_json (dict) – JSON response from the Overpass API

Returns nodes, paths – dicts’ keys = osmid and values = dict of attributes

Return type tuple of dicts

osmnx.graph.graph_from_address(address, dist=1000, dist_type='bbox', net-
work_type='all_private', simplify=True, retain_all=False,
truncate_by_edge=False, return_coords=False,
clean_periphery=True, custom_filter=None)

Create a graph from OSM within some distance of some address.

3.2. Internals reference 69

tag:value
tag:value

OSMnx Documentation, Release 1.1.1

Parameters

• address (string) – the address to geocode and use as the central point around which to
construct the graph

• dist (int) – retain only those nodes within this many meters of the center of the graph

• dist_type (string {"network", "bbox"}) – if “bbox”, retain only those nodes
within a bounding box of the distance parameter. if “network”, retain only those nodes
within some network distance from the center-most node (requires that scikit-learn is in-
stalled as an optional dependency).

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter is
None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one
of node’s neighbors is within the bounding box

• return_coords (bool) – optionally also return the geocoded coordinates of the address

• clean_periphery (bool,) – if True, buffer 500m to get a graph larger than requested,
then simplify, then truncate it to requested spatial boundaries

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns

Return type networkx.MultiDiGraph or optionally (networkx.MultiDiGraph, (lat, lng))

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.graph.graph_from_bbox(north, south, east, west, network_type='all_private', simplify=True,
retain_all=False, truncate_by_edge=False, clean_periphery=True,
custom_filter=None)

Create a graph from OSM within some bounding box.

Parameters

• north (float) – northern latitude of bounding box

• south (float) – southern latitude of bounding box

• east (float) – eastern longitude of bounding box

• west (float) – western longitude of bounding box

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter is
None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

70 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one
of node’s neighbors is within the bounding box

• clean_periphery (bool) – if True, buffer 500m to get a graph larger than requested,
then simplify, then truncate it to requested spatial boundaries

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns G

Return type networkx.MultiDiGraph

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.graph.graph_from_place(query, network_type='all_private', simplify=True, re-
tain_all=False, truncate_by_edge=False, which_result=None,
buffer_dist=None, clean_periphery=True, custom_filter=None)

Create graph from OSM within the boundaries of some geocodable place(s).

The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does
not have a polygon for this place, you can instead get its street network using the graph_from_address function,
which geocodes the place name to a point and gets the network within some distance of that point.

If OSM does have polygon boundaries for this place but you’re not finding it, try to vary the query string, pass
in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the
OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to
the graph_from_polygon function.

Parameters

• query (string or dict or list) – the query or queries to geocode to get place
boundary polygon(s)

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter is
None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside boundary polygon if at least
one of node’s neighbors is within the polygon

• which_result (int) – which geocoding result to use. if None, auto-select the first
(Multi)Polygon or raise an error if OSM doesn’t return one.

• buffer_dist (float) – distance to buffer around the place geometry, in meters

• clean_periphery (bool) – if True, buffer 500m to get a graph larger than requested,
then simplify, then truncate it to requested spatial boundaries

3.2. Internals reference 71

OSMnx Documentation, Release 1.1.1

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns G

Return type networkx.MultiDiGraph

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.graph.graph_from_point(center_point, dist=1000, dist_type='bbox', net-
work_type='all_private', simplify=True, retain_all=False, trun-
cate_by_edge=False, clean_periphery=True, custom_filter=None)

Create a graph from OSM within some distance of some (lat, lng) point.

Parameters

• center_point (tuple) – the (lat, lng) center point around which to construct the graph

• dist (int) – retain only those nodes within this many meters of the center of the graph,
with distance determined according to dist_type argument

• dist_type (string {"network", "bbox"}) – if “bbox”, retain only those nodes
within a bounding box of the distance parameter. if “network”, retain only those nodes
within some network distance from the center-most node (requires that scikit-learn is in-
stalled as an optional dependency).

• network_type (string, {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter
is None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one
of node’s neighbors is within the bounding box

• clean_periphery (bool,) – if True, buffer 500m to get a graph larger than requested,
then simplify, then truncate it to requested spatial boundaries

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns G

Return type networkx.MultiDiGraph

72 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.graph.graph_from_polygon(polygon, network_type='all_private', simplify=True,
retain_all=False, truncate_by_edge=False,
clean_periphery=True, custom_filter=None)

Create a graph from OSM within the boundaries of some shapely polygon.

Parameters

• polygon (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon) – the shape to get network data within. coordinates should be in
unprojected latitude-longitude degrees (EPSG:4326).

• network_type (string {"all_private", "all", "bike", "drive",
"drive_service", "walk"}) – what type of street network to get if custom_filter is
None

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside boundary polygon if at least
one of node’s neighbors is within the polygon

• clean_periphery (bool) – if True, buffer 500m to get a graph larger than requested,
then simplify, then truncate it to requested spatial boundaries

• custom_filter (string) – a custom ways filter to be used instead of the network_type
presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a net-
work_type that is in settings.bidirectional_network_types if you want graph to be fully bi-
directional.

Returns G

Return type networkx.MultiDiGraph

Notes

You can configure the Overpass server timeout, memory allocation, and other custom settings via ox.config().

osmnx.graph.graph_from_xml(filepath, bidirectional=False, simplify=True, retain_all=False)
Create a graph from data in a .osm formatted XML file.

Parameters

• filepath (string or pathlib.Path) – path to file containing OSM XML data

• bidirectional (bool) – if True, create bi-directional edges for one-way streets

• simplify (bool) – if True, simplify graph topology with the simplify_graph function

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

Returns G

Return type networkx.MultiDiGraph

3.2. Internals reference 73

OSMnx Documentation, Release 1.1.1

3.2.9 osmnx.io module

Serialize graphs to/from files on disk.

osmnx.io._convert_bool_string(value)
Convert a “True” or “False” string literal to corresponding boolean type.

This is necessary because Python will otherwise parse the string “False” to the boolean value True, that is,
bool(“False”) == True. This function raises a ValueError if a value other than “True” or “False” is passed.

If the value is already a boolean, this function just returns it, to accommodate usage when the value was origi-
nally inside a stringified list.

Parameters value (string {"True", "False"}) – the value to convert

Returns

Return type bool

osmnx.io._convert_edge_attr_types(G, dtypes=None)
Convert graph edges’ attributes using a dict of data types.

Parameters

• G (networkx.MultiDiGraph) – input graph

• dtypes (dict) – dict of edge attribute names:types

Returns G

Return type networkx.MultiDiGraph

osmnx.io._convert_graph_attr_types(G, dtypes=None)
Convert graph-level attributes using a dict of data types.

Parameters

• G (networkx.MultiDiGraph) – input graph

• dtypes (dict) – dict of graph-level attribute names:types

Returns G

Return type networkx.MultiDiGraph

osmnx.io._convert_node_attr_types(G, dtypes=None)
Convert graph nodes’ attributes using a dict of data types.

Parameters

• G (networkx.MultiDiGraph) – input graph

• dtypes (dict) – dict of node attribute names:types

Returns G

Return type networkx.MultiDiGraph

osmnx.io._stringify_nonnumeric_cols(gdf)
Make every non-numeric GeoDataFrame column (besides geometry) a string.

This allows proper serializing via Fiona of GeoDataFrames with mixed types such as strings and ints in the same
column.

Parameters gdf (geopandas.GeoDataFrame) – gdf to stringify non-numeric columns of

Returns gdf – gdf with non-numeric columns stringified

74 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

Return type geopandas.GeoDataFrame

osmnx.io.load_graphml(filepath, node_dtypes=None, edge_dtypes=None, graph_dtypes=None)
Load an OSMnx-saved GraphML file from disk.

This converts node, edge, and graph-level attributes (serialized as strings) to their appropriate data types.
These can be customized as needed by passing in dtypes arguments providing types or custom converter
functions. For example, if you want to convert some attribute’s values to bool, consider using the built-in
ox.io._convert_bool_string function to properly handle “True”/”False” string literals as True/False booleans:
ox.load_graphml(fp, node_dtypes={my_attr: ox.io._convert_bool_string})

If you manually configured the all_oneway=True setting, you may need to manually specify here that edge
oneway attributes should be type str.

Parameters

• filepath (string or pathlib.Path) – path to the GraphML file

• node_dtypes (dict) – dict of node attribute names:types to convert values’ data types.
the type can be a python type or a custom string converter function.

• edge_dtypes (dict) – dict of edge attribute names:types to convert values’ data types.
the type can be a python type or a custom string converter function.

• graph_dtypes (dict) – dict of graph-level attribute names:types to convert values’ data
types. the type can be a python type or a custom string converter function.

Returns G

Return type networkx.MultiDiGraph

osmnx.io.save_graph_geopackage(G, filepath=None, encoding='utf-8', directed=False)
Save graph nodes and edges to disk as layers in a GeoPackage file.

Parameters

• G (networkx.MultiDiGraph) – input graph

• filepath (string or pathlib.Path) – path to the GeoPackage file including ex-
tension. if None, use default data folder + graph.gpkg

• encoding (string) – the character encoding for the saved file

• directed (bool) – if False, save one edge for each undirected edge in the graph but
retain original oneway and to/from information as edge attributes; if True, save one edge for
each directed edge in the graph

Returns

Return type None

osmnx.io.save_graph_shapefile(G, filepath=None, encoding='utf-8', directed=False)
Save graph nodes and edges to disk as ESRI shapefiles.

The shapefile format is proprietary and outdated. Whenever possible, you should use the superior GeoPackage
file format instead via the save_graph_geopackage function.

Parameters

• G (networkx.MultiDiGraph) – input graph

• filepath (string or pathlib.Path) – path to the shapefiles folder (no file ex-
tension). if None, use default data folder + graph_shapefile

• encoding (string) – the character encoding for the saved files

3.2. Internals reference 75

OSMnx Documentation, Release 1.1.1

• directed (bool) – if False, save one edge for each undirected edge in the graph but
retain original oneway and to/from information as edge attributes; if True, save one edge for
each directed edge in the graph

Returns

Return type None

osmnx.io.save_graph_xml(data, filepath=None, node_tags=['highway'], node_attrs=['id', 'timestamp',
'uid', 'user', 'version', 'changeset', 'lat', 'lon'], edge_tags=['highway',
'lanes', 'maxspeed', 'name', 'oneway'], edge_attrs=['id', 'timestamp',
'uid', 'user', 'version', 'changeset'], oneway=False, merge_edges=True,
edge_tag_aggs=None)

Do not use: deprecated. Use osm_xml.save_graph_xml instead.

Parameters

• data (networkx multi(di)graph OR a length 2 iterable of
nodes/edges) – geopandas GeoDataFrames

• filepath (string or pathlib.Path) – path to the .osm file including extension.
if None, use default data folder + graph.osm

• node_tags (list) – osm node tags to include in output OSM XML

• node_attrs (list) – osm node attributes to include in output OSM XML

• edge_tags (list) – osm way tags to include in output OSM XML

• edge_attrs (list) – osm way attributes to include in output OSM XML

• oneway (bool) – the default oneway value used to fill this tag where missing

• merge_edges (bool) – if True merges graph edges such that each OSM way has one
entry and one entry only in the OSM XML. Otherwise, every OSM way will have a separate
entry for each node pair it contains.

• edge_tag_aggs (list of length-2 string tuples) – useful only if
merge_edges is True, this argument allows the user to specify edge attributes to aggregate
such that the merged OSM way entry tags accurately represent the sum total of their
component edge attributes. For example, if the user wants the OSM way to have a “length”
attribute, the user must specify edge_tag_aggs=[(‘length’, ‘sum’)] in order to tell this
method to aggregate the lengths of the individual component edges. Otherwise, the length
attribute will simply reflect the length of the first edge associated with the way.

Returns

Return type None

osmnx.io.save_graphml(G, filepath=None, gephi=False, encoding='utf-8')
Save graph to disk as GraphML file.

Parameters

• G (networkx.MultiDiGraph) – input graph

• filepath (string or pathlib.Path) – path to the GraphML file including exten-
sion. if None, use default data folder + graph.graphml

• gephi (bool) – if True, give each edge a unique key/id to work around Gephi’s interpre-
tation of the GraphML specification

• encoding (string) – the character encoding for the saved file

Returns

76 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

Return type None

3.2.10 osmnx.osm_xml module

Read/write .osm formatted XML files.

class osmnx.osm_xml._OSMContentHandler
SAX content handler for OSM XML.

Used to build an Overpass-like response JSON object in self.object. For format notes, see http:
//wiki.openstreetmap.org/wiki/OSM_XML#OSM_XML_file_format_notes and http://overpass-api.de/output_
formats.html#json

endElement(name)
Signals the end of an element in non-namespace mode.

The name parameter contains the name of the element type, just as with the startElement event.

startElement(name, attrs)
Signals the start of an element in non-namespace mode.

The name parameter contains the raw XML 1.0 name of the element type as a string and the attrs parameter
holds an instance of the Attributes class containing the attributes of the element.

osmnx.osm_xml._append_edges_xml_tree(root, gdf_edges, edge_attrs, edge_tags, edge_tag_aggs,
merge_edges)

Append edges to an XML tree.

Parameters

• root (ElementTree.Element) – xml tree

• gdf_edges (geopandas.GeoDataFrame) – GeoDataFrame of graph edges

• edge_attrs (list) – osm way attributes to include in output OSM XML

• edge_tags (list) – osm way tags to include in output OSM XML

• edge_tag_aggs (list of length-2 string tuples) – useful only if
merge_edges is True, this argument allows the user to specify edge attributes to aggregate
such that the merged OSM way entry tags accurately represent the sum total of their
component edge attributes. For example, if the user wants the OSM way to have a “length”
attribute, the user must specify edge_tag_aggs=[(‘length’, ‘sum’)] in order to tell this
method to aggregate the lengths of the individual component edges. Otherwise, the length
attribute will simply reflect the length of the first edge associated with the way.

• merge_edges (bool) – if True merges graph edges such that each OSM way has one
entry and one entry only in the OSM XML. Otherwise, every OSM way will have a separate
entry for each node pair it contains.

Returns root – xml tree with edges appended

Return type ElementTree.Element

osmnx.osm_xml._append_nodes_xml_tree(root, gdf_nodes, node_attrs, node_tags)
Append nodes to an XML tree.

Parameters

• root (ElementTree.Element) – xml tree

• gdf_nodes (geopandas.GeoDataFrame) – GeoDataFrame of graph nodes

• node_attrs (list) – osm way attributes to include in output OSM XML

3.2. Internals reference 77

http://wiki.openstreetmap.org/wiki/OSM_XML#OSM_XML_file_format_notes
http://wiki.openstreetmap.org/wiki/OSM_XML#OSM_XML_file_format_notes
http://overpass-api.de/output_formats.html#json
http://overpass-api.de/output_formats.html#json

OSMnx Documentation, Release 1.1.1

• node_tags (list) – osm way tags to include in output OSM XML

Returns root – xml tree with nodes appended

Return type ElementTree.Element

osmnx.osm_xml._get_unique_nodes_ordered_from_way(df_way_edges)
Recover original node order from df of edges associated w/ single OSM way.

Parameters df_way_edges (pandas.DataFrame) – Dataframe containing columns ‘u’ and
‘v’ corresponding to origin/destination nodes.

Returns unique_ordered_nodes – An ordered list of unique node IDs. Note: If the edges do not all
connect (e.g. [(1, 2), (2,3), (10, 11), (11, 12), (12, 13)]), then this method will return only those
nodes associated with the largest component of connected edges, even if subsequent connected
chunks are contain more total nodes. This is done to ensure a proper topological representation
of nodes in the XML way records because if there are unconnected components, the sorting
algorithm cannot recover their original order. We would not likely ever encounter this kind of
disconnected structure of nodes within a given way, but it is not explicitly forbidden in the OSM
XML design schema.

Return type list

osmnx.osm_xml._overpass_json_from_file(filepath)
Read OSM XML from file and return Overpass-like JSON.

Parameters filepath (string or pathlib.Path) – path to file containing OSM XML
data

Returns

Return type OSMContentHandler object

osmnx.osm_xml.save_graph_xml(data, filepath=None, node_tags=['highway'], node_attrs=['id',
'timestamp', 'uid', 'user', 'version', 'changeset', 'lat', 'lon'],
edge_tags=['highway', 'lanes', 'maxspeed', 'name', 'oneway'],
edge_attrs=['id', 'timestamp', 'uid', 'user', 'version', 'changeset'],
oneway=False, merge_edges=True, edge_tag_aggs=None)

Save graph to disk as an OSM-formatted XML .osm file.

This function exists only to allow serialization to the .osm file format for applications that require it, and
has constraints to conform to that. To save/load full-featured OSMnx graphs to/from disk for later use,
use the io.save_graphml and io.load_graphml functions instead. To load a graph from a .osm file, use the
graph.graph_from_xml function.

Note: for large networks this function can take a long time to run. Before using this function, make sure you
configured OSMnx as described in the example below when you created the graph.

Example

>>> import osmnx as ox
>>> utn = ox.settings.useful_tags_node
>>> oxna = ox.settings.osm_xml_node_attrs
>>> oxnt = ox.settings.osm_xml_node_tags
>>> utw = ox.settings.useful_tags_way
>>> oxwa = ox.settings.osm_xml_way_attrs
>>> oxwt = ox.settings.osm_xml_way_tags
>>> utn = list(set(utn + oxna + oxnt))
>>> utw = list(set(utw + oxwa + oxwt))
>>> ox.config(all_oneway=True, useful_tags_node=utn, useful_tags_way=utw)

(continues on next page)

78 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

(continued from previous page)

>>> G = ox.graph_from_place('Piedmont, CA, USA', network_type='drive')
>>> ox.save_graph_xml(G, filepath='./data/graph.osm')

Parameters

• data (networkx multi(di)graph OR a length 2 iterable of
nodes/edges) – geopandas GeoDataFrames

• filepath (string or pathlib.Path) – path to the .osm file including extension.
if None, use default data folder + graph.osm

• node_tags (list) – osm node tags to include in output OSM XML

• node_attrs (list) – osm node attributes to include in output OSM XML

• edge_tags (list) – osm way tags to include in output OSM XML

• edge_attrs (list) – osm way attributes to include in output OSM XML

• oneway (bool) – the default oneway value used to fill this tag where missing

• merge_edges (bool) – if True merges graph edges such that each OSM way has one
entry and one entry only in the OSM XML. Otherwise, every OSM way will have a separate
entry for each node pair it contains.

• edge_tag_aggs (list of length-2 string tuples) – useful only if
merge_edges is True, this argument allows the user to specify edge attributes to aggregate
such that the merged OSM way entry tags accurately represent the sum total of their
component edge attributes. For example, if the user wants the OSM way to have a “length”
attribute, the user must specify edge_tag_aggs=[(‘length’, ‘sum’)] in order to tell this
method to aggregate the lengths of the individual component edges. Otherwise, the length
attribute will simply reflect the length of the first edge associated with the way.

Returns

Return type None

3.2.11 osmnx.plot module

Plot spatial geometries, street networks, and routes.

osmnx.plot._config_ax(ax, crs, bbox, padding)
Configure axis for display.

Parameters

• ax (matplotlib axis) – the axis containing the plot

• crs (dict or string or pyproj.CRS) – the CRS of the plotted geometries

• bbox (tuple) – bounding box as (north, south, east, west)

• padding (float) – relative padding to add around the plot’s bbox

Returns ax – the configured/styled axis

Return type matplotlib axis

osmnx.plot._get_colors_by_value(vals, num_bins, cmap, start, stop, na_color, equal_size)
Map colors to the values in a series.

Parameters

3.2. Internals reference 79

OSMnx Documentation, Release 1.1.1

• vals (pandas.Series) – series labels are node/edge IDs and values are attribute values

• num_bins (int) – if None, linearly map a color to each value. otherwise, assign values
to this many bins then assign a color to each bin.

• cmap (string) – name of a matplotlib colormap

• start (float) – where to start in the colorspace

• stop (float) – where to end in the colorspace

• na_color (string) – what color to assign to missing values

• equal_size (bool) – ignored if num_bins is None. if True, bin into equal-sized quan-
tiles (requires unique bin edges). if False, bin into equal-spaced bins.

Returns color_series – series labels are node/edge IDs and values are colors

Return type pandas.Series

osmnx.plot._save_and_show(fig, ax, save=False, show=True, close=True, filepath=None, dpi=300)
Save a figure to disk and/or show it, as specified by args.

Parameters

• fig (figure) – matplotlib figure

• ax (axis) – matplotlib axis

• save (bool) – if True, save the figure to disk at filepath

• show (bool) – if True, call pyplot.show() to show the figure

• close (bool) – if True, call pyplot.close() to close the figure

• filepath (string) – if save is True, the path to the file. file format determined from
extension. if None, use settings.imgs_folder/image.png

• dpi (int) – if save is True, the resolution of saved file

Returns fig, ax – matplotlib figure, axis

Return type tuple

osmnx.plot.get_colors(n, cmap='viridis', start=0.0, stop=1.0, alpha=1.0, return_hex=False)
Get n evenly-spaced colors from a matplotlib colormap.

Parameters

• n (int) – number of colors

• cmap (string) – name of a matplotlib colormap

• start (float) – where to start in the colorspace

• stop (float) – where to end in the colorspace

• alpha (float) – opacity, the alpha channel for the RGBa colors

• return_hex (bool) – if True, convert RGBa colors to HTML-like hexadecimal RGB
strings. if False, return colors as (R, G, B, alpha) tuples.

Returns color_list

Return type list

osmnx.plot.get_edge_colors_by_attr(G, attr, num_bins=None, cmap='viridis', start=0, stop=1,
na_color='none', equal_size=False)

Get colors based on edge attribute values.

80 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

Parameters

• G (networkx.MultiDiGraph) – input graph

• attr (string) – name of a numerical edge attribute

• num_bins (int) – if None, linearly map a color to each value. otherwise, assign values
to this many bins then assign a color to each bin.

• cmap (string) – name of a matplotlib colormap

• start (float) – where to start in the colorspace

• stop (float) – where to end in the colorspace

• na_color (string) – what color to assign edges with missing attr values

• equal_size (bool) – ignored if num_bins is None. if True, bin into equal-sized quan-
tiles (requires unique bin edges). if False, bin into equal-spaced bins.

Returns edge_colors – series labels are edge IDs (u, v, key) and values are colors

Return type pandas.Series

osmnx.plot.get_node_colors_by_attr(G, attr, num_bins=None, cmap='viridis', start=0, stop=1,
na_color='none', equal_size=False)

Get colors based on node attribute values.

Parameters

• G (networkx.MultiDiGraph) – input graph

• attr (string) – name of a numerical node attribute

• num_bins (int) – if None, linearly map a color to each value. otherwise, assign values
to this many bins then assign a color to each bin.

• cmap (string) – name of a matplotlib colormap

• start (float) – where to start in the colorspace

• stop (float) – where to end in the colorspace

• na_color (string) – what color to assign nodes with missing attr values

• equal_size (bool) – ignored if num_bins is None. if True, bin into equal-sized quan-
tiles (requires unique bin edges). if False, bin into equal-spaced bins.

Returns node_colors – series labels are node IDs and values are colors

Return type pandas.Series

osmnx.plot.plot_figure_ground(G=None, address=None, point=None, dist=805,
network_type='drive_service', street_widths=None,
default_width=4, figsize=(8, 8), edge_color='w',
smooth_joints=True, **pg_kwargs)

Plot a figure-ground diagram of a street network.

Parameters

• G (networkx.MultiDiGraph) – input graph, must be unprojected

• address (string) – address to geocode as the center point if G is not passed in

• point (tuple) – center point if address and G are not passed in

• dist (numeric) – how many meters to extend north, south, east, west from center point

• network_type (string) – what type of street network to get

3.2. Internals reference 81

OSMnx Documentation, Release 1.1.1

• street_widths (dict) – dict keys are street types and values are widths to plot in pixels

• default_width (numeric) – fallback width in pixels for any street type not in
street_widths

• figsize (numeric) – (width, height) of figure, should be equal

• edge_color (string) – color of the edges’ lines

• smooth_joints (bool) – if True, plot nodes same width as streets to smooth line joints
and prevent cracks between them from showing

• pg_kwargs – keyword arguments to pass to plot_graph

Returns fig, ax – matplotlib figure, axis

Return type tuple

osmnx.plot.plot_footprints(gdf, ax=None, figsize=(8, 8), color='orange', alpha=None, bg-
color='#111111', bbox=None, save=False, show=True, close=False,
filepath=None, dpi=600)

Plot a GeoDataFrame of geospatial entities’ footprints.

Parameters

• gdf (geopandas.GeoDataFrame) – GeoDataFrame of footprints (shapely Polygons
and MultiPolygons)

• ax (axis) – if not None, plot on this preexisting axis

• figsize (tuple) – if ax is None, create new figure with size (width, height)

• color (string) – color of the footprints

• alpha (float) – opacity of the footprints

• bgcolor (string) – background color of the plot

• bbox (tuple) – bounding box as (north, south, east, west). if None, will calculate from
the spatial extents of the geometries in gdf

• save (bool) – if True, save the figure to disk at filepath

• show (bool) – if True, call pyplot.show() to show the figure

• close (bool) – if True, call pyplot.close() to close the figure

• filepath (string) – if save is True, the path to the file. file format determined from
extension. if None, use settings.imgs_folder/image.png

• dpi (int) – if save is True, the resolution of saved file

Returns fig, ax – matplotlib figure, axis

Return type tuple

osmnx.plot.plot_graph(G, ax=None, figsize=(8, 8), bgcolor='#111111', node_color='w',
node_size=15, node_alpha=None, node_edgecolor='none', node_zorder=1,
edge_color='#999999', edge_linewidth=1, edge_alpha=None, show=True,
close=False, save=False, filepath=None, dpi=300, bbox=None)

Plot a graph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• ax (matplotlib axis) – if not None, plot on this preexisting axis

82 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

• figsize (tuple) – if ax is None, create new figure with size (width, height)

• bgcolor (string) – background color of plot

• node_color (string or list) – color(s) of the nodes

• node_size (int) – size of the nodes: if 0, then skip plotting the nodes

• node_alpha (float) – opacity of the nodes, note: if you passed RGBA values to
node_color, set node_alpha=None to use the alpha channel in node_color

• node_edgecolor (string) – color of the nodes’ markers’ borders

• node_zorder (int) – zorder to plot nodes: edges are always 1, so set node_zorder=0 to
plot nodes below edges

• edge_color (string or list) – color(s) of the edges’ lines

• edge_linewidth (float) – width of the edges’ lines: if 0, then skip plotting the edges

• edge_alpha (float) – opacity of the edges, note: if you passed RGBA values to
edge_color, set edge_alpha=None to use the alpha channel in edge_color

• show (bool) – if True, call pyplot.show() to show the figure

• close (bool) – if True, call pyplot.close() to close the figure

• save (bool) – if True, save the figure to disk at filepath

• filepath (string) – if save is True, the path to the file. file format determined from
extension. if None, use settings.imgs_folder/image.png

• dpi (int) – if save is True, the resolution of saved file

• bbox (tuple) – bounding box as (north, south, east, west). if None, will calculate from
spatial extents of plotted geometries.

Returns fig, ax – matplotlib figure, axis

Return type tuple

osmnx.plot.plot_graph_route(G, route, route_color='r', route_linewidth=4, route_alpha=0.5,
orig_dest_size=100, ax=None, **pg_kwargs)

Plot a route along a graph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• route (list) – route as a list of node IDs

• route_color (string) – color of the route

• route_linewidth (int) – width of the route line

• route_alpha (float) – opacity of the route line

• orig_dest_size (int) – size of the origin and destination nodes

• ax (matplotlib axis) – if not None, plot route on this preexisting axis instead of
creating a new fig, ax and drawing the underlying graph

• pg_kwargs – keyword arguments to pass to plot_graph

Returns fig, ax – matplotlib figure, axis

Return type tuple

3.2. Internals reference 83

OSMnx Documentation, Release 1.1.1

osmnx.plot.plot_graph_routes(G, routes, route_colors='r', route_linewidths=4, **pgr_kwargs)
Plot several routes along a graph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• routes (list) – routes as a list of lists of node IDs

• route_colors (string or list) – if string, 1 color for all routes. if list, the colors
for each route.

• route_linewidths (int or list) – if int, 1 linewidth for all routes. if list, the
linewidth for each route.

• pgr_kwargs – keyword arguments to pass to plot_graph_route

Returns fig, ax – matplotlib figure, axis

Return type tuple

3.2.12 osmnx.projection module

Project spatial geometries and spatial networks.

osmnx.projection.is_projected(crs)
Determine if a coordinate reference system is projected or not.

This is a convenience wrapper around the pyproj.CRS.is_projected function.

Parameters crs (string or pyproj.CRS) – the coordinate reference system

Returns projected – True if crs is projected, otherwise False

Return type bool

osmnx.projection.project_gdf(gdf, to_crs=None, to_latlong=False)
Project a GeoDataFrame from its current CRS to another.

If to_crs is None, project to the UTM CRS for the UTM zone in which the GeoDataFrame’s centroid lies.
Otherwise project to the CRS defined by to_crs. The simple UTM zone calculation in this function works well
for most latitudes, but may not work for some extreme northern locations like Svalbard or far northern Norway.

Parameters

• gdf (geopandas.GeoDataFrame) – the GeoDataFrame to be projected

• to_crs (string or pyproj.CRS) – if None, project to UTM zone in which gdf’s
centroid lies, otherwise project to this CRS

• to_latlong (bool) – if True, project to settings.default_crs and ignore to_crs

Returns gdf_proj – the projected GeoDataFrame

Return type geopandas.GeoDataFrame

osmnx.projection.project_geometry(geometry, crs=None, to_crs=None, to_latlong=False)
Project a shapely geometry from its current CRS to another.

If to_crs is None, project to the UTM CRS for the UTM zone in which the geometry’s centroid lies. Otherwise
project to the CRS defined by to_crs.

Parameters

• geometry (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon) – the geometry to project

84 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

• crs (string or pyproj.CRS) – the starting CRS of the passed-in geometry. if None,
it will be set to settings.default_crs

• to_crs (string or pyproj.CRS) – if None, project to UTM zone in which geome-
try’s centroid lies, otherwise project to this CRS

• to_latlong (bool) – if True, project to settings.default_crs and ignore to_crs

Returns geometry_proj, crs – the projected geometry and its new CRS

Return type tuple

osmnx.projection.project_graph(G, to_crs=None)
Project graph from its current CRS to another.

If to_crs is None, project the graph to the UTM CRS for the UTM zone in which the graph’s centroid lies.
Otherwise, project the graph to the CRS defined by to_crs.

Parameters

• G (networkx.MultiDiGraph) – the graph to be projected

• to_crs (string or pyproj.CRS) – if None, project graph to UTM zone in which
graph centroid lies, otherwise project graph to this CRS

Returns G_proj – the projected graph

Return type networkx.MultiDiGraph

3.2.13 osmnx.settings module

Global settings that can be configured by user with utils.config().

3.2.14 osmnx.simplification module

Simplify, correct, and consolidate network topology.

osmnx.simplification._build_path(G, endpoint, endpoint_successor, endpoints)
Build a path of nodes from one endpoint node to next endpoint node.

Parameters

• G (networkx.MultiDiGraph) – input graph

• endpoint (int) – the endpoint node from which to start the path

• endpoint_successor (int) – the successor of endpoint through which the path to the
next endpoint will be built

• endpoints (set) – the set of all nodes in the graph that are endpoints

Returns path – the first and last items in the resulting path list are endpoint nodes, and all other
items are interstitial nodes that can be removed subsequently

Return type list

osmnx.simplification._consolidate_intersections_rebuild_graph(G, toler-
ance=10, recon-
nect_edges=True)

Consolidate intersections comprising clusters of nearby nodes.

Merge nodes and return a rebuilt graph with consolidated intersections and reconnected edge geometries.

3.2. Internals reference 85

OSMnx Documentation, Release 1.1.1

The tolerance argument should be adjusted to approximately match street design standards in the specific street
network, and you should always use a projected graph to work in meaningful and consistent units like meters.

Returned graph’s node IDs represent clusters rather than osmids. Refer to nodes’ osmid_original attributes for
original osmids. If multiple nodes were merged together, the osmid_original attribute is a list of merged nodes’
osmids.

Parameters

• G (networkx.MultiDiGraph) – a projected graph

• tolerance (float) – nodes are buffered to this distance (in graph’s geometry’s units)
and subsequent overlaps are dissolved into a single node

• reconnect_edges (bool) – ignored if rebuild_graph is not True. if True, reconnect
edges and their geometries in rebuilt graph to the consolidated nodes and update edge length
attributes; if False, returned graph has no edges (which is faster if you just need topologically
consolidated intersection counts).

Returns H – a rebuilt graph with consolidated intersections and reconnected edge geometries

Return type networkx.MultiDiGraph

osmnx.simplification._get_paths_to_simplify(G, strict=True)
Generate all the paths to be simplified between endpoint nodes.

The path is ordered from the first endpoint, through the interstitial nodes, to the second endpoint.

Parameters

• G (networkx.MultiDiGraph) – input graph

• strict (bool) – if False, allow nodes to be end points even if they fail all other rules but
have edges with different OSM IDs

Yields path_to_simplify (list)

osmnx.simplification._is_endpoint(G, node, strict=True)
Is node a true endpoint of an edge.

Return True if the node is a “real” endpoint of an edge in the network, otherwise False. OSM data includes lots
of nodes that exist only as points to help streets bend around curves. An end point is a node that either: 1) is
its own neighbor, ie, it self-loops. 2) or, has no incoming edges or no outgoing edges, ie, all its incident edges
point inward or all its incident edges point outward. 3) or, it does not have exactly two neighbors and degree of
2 or 4. 4) or, if strict mode is false, if its edges have different OSM IDs.

Parameters

• G (networkx.MultiDiGraph) – input graph

• node (int) – the node to examine

• strict (bool) – if False, allow nodes to be end points even if they fail all other rules but
have edges with different OSM IDs

Returns

Return type bool

osmnx.simplification._merge_nodes_geometric(G, tolerance)
Geometrically merge nodes within some distance of each other.

Parameters

• G (networkx.MultiDiGraph) – a projected graph

86 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

• tolerance (float) – buffer nodes to this distance (in graph’s geometry’s units) then
merge overlapping polygons into a single polygon via a unary union operation

Returns merged – the merged overlapping polygons of the buffered nodes

Return type GeoSeries

osmnx.simplification.consolidate_intersections(G, tolerance=10, rebuild_graph=True,
dead_ends=False, recon-
nect_edges=True)

Consolidate intersections comprising clusters of nearby nodes.

Merges nearby nodes and returns either their centroids or a rebuilt graph with consolidated intersections and
reconnected edge geometries. The tolerance argument should be adjusted to approximately match street design
standards in the specific street network, and you should always use a projected graph to work in meaningful and
consistent units like meters.

When rebuild_graph=False, it uses a purely geometrical (and relatively fast) algorithm to identify “geometrically
close” nodes, merge them, and return just the merged intersections’ centroids. When rebuild_graph=True, it
uses a topological (and slower but more accurate) algorithm to identify “topologically close” nodes, merge
them, then rebuild/return the graph. Returned graph’s node IDs represent clusters rather than osmids. Refer to
nodes’ osmid_original attributes for original osmids. If multiple nodes were merged together, the osmid_original
attribute is a list of merged nodes’ osmids.

Divided roads are often represented by separate centerline edges. The intersection of two divided roads thus
creates 4 nodes, representing where each edge intersects a perpendicular edge. These 4 nodes represent a single
intersection in the real world. A similar situation occurs with roundabouts and traffic circles. This function
consolidates nearby nodes by buffering them to an arbitrary distance, merging overlapping buffers, and taking
their centroid.

Parameters

• G (networkx.MultiDiGraph) – a projected graph

• tolerance (float) – nodes are buffered to this distance (in graph’s geometry’s units)
and subsequent overlaps are dissolved into a single node

• rebuild_graph (bool) – if True, consolidate the nodes topologically, rebuild the graph,
and return as networkx.MultiDiGraph. if False, consolidate the nodes geometrically and
return the consolidated node points as geopandas.GeoSeries

• dead_ends (bool) – if False, discard dead-end nodes to return only street-intersection
points

• reconnect_edges (bool) – ignored if rebuild_graph is not True. if True, reconnect
edges and their geometries in rebuilt graph to the consolidated nodes and update edge length
attributes; if False, returned graph has no edges (which is faster if you just need topologically
consolidated intersection counts).

Returns if rebuild_graph=True, returns MultiDiGraph with consolidated intersections and recon-
nected edge geometries. if rebuild_graph=False, returns GeoSeries of shapely Points represent-
ing the centroids of street intersections

Return type networkx.MultiDiGraph or geopandas.GeoSeries

osmnx.simplification.simplify_graph(G, strict=True, remove_rings=True)
Simplify a graph’s topology by removing interstitial nodes.

Simplifies graph topology by removing all nodes that are not intersections or dead-ends. Create an edge directly
between the end points that encapsulate them, but retain the geometry of the original edges, saved as a new
geometry attribute on the new edge. Note that only simplified edges receive a geometry attribute. Some of the

3.2. Internals reference 87

OSMnx Documentation, Release 1.1.1

resulting consolidated edges may comprise multiple OSM ways, and if so, their multiple attribute values are
stored as a list.

Parameters

• G (networkx.MultiDiGraph) – input graph

• strict (bool) – if False, allow nodes to be end points even if they fail all other rules
but have incident edges with different OSM IDs. Lets you keep nodes at elbow two-way
intersections, but sometimes individual blocks have multiple OSM IDs within them too.

• remove_rings (bool) – if True, remove isolated self-contained rings that have no end-
points

Returns G – topologically simplified graph, with a new geometry attribute on each simplified edge

Return type networkx.MultiDiGraph

3.2.15 osmnx.speed module

Calculate graph edge speeds and travel times.

osmnx.speed._clean_maxspeed(value, convert_mph=True)
Clean a maxspeed string and convert mph to kph if necessary.

Parameters

• value (string) – an OSM way maxspeed value

• convert_mph (bool) – if True, convert mph to kph

Returns value_clean

Return type string

osmnx.speed._collapse_multiple_maxspeed_values(value)
Collapse a list of maxspeed values into its mean value.

Parameters value (list or string) – an OSM way maxspeed value, or a list of them

Returns mean_value – an integer representation of the mean value in the list, converted to kph if
original value was in mph.

Return type int

osmnx.speed.add_edge_speeds(G, hwy_speeds=None, fallback=None, precision=1)
Add edge speeds (km per hour) to graph as new speed_kph edge attributes.

Imputes free-flow travel speeds for all edges based on mean maxspeed value of edges, per highway type. For
highway types in graph that have no maxspeed value on any edge, function assigns the mean of all maxspeed
values in graph.

This mean-imputation can obviously be imprecise, and the caller can override it by passing in hwy_speeds and/or
fallback arguments that correspond to local speed limit standards.

If edge maxspeed attribute has “mph” in it, value will automatically be converted from miles per hour to km
per hour. Any other speed units should be manually converted to km per hour prior to running this function,
otherwise there could be unexpected results. If “mph” does not appear in the edge’s maxspeed attribute string,
then function assumes kph, per OSM guidelines: https://wiki.openstreetmap.org/wiki/Map_Features/Units

Parameters

• G (networkx.MultiDiGraph) – input graph

88 Chapter 3. User reference

https://wiki.openstreetmap.org/wiki/Map_Features/Units

OSMnx Documentation, Release 1.1.1

• hwy_speeds (dict) – dict keys = OSM highway types and values = typical speeds (km
per hour) to assign to edges of that highway type for any edges missing speed data. Any
edges with highway type not in hwy_speeds will be assigned the mean preexisting speed
value of all edges of that highway type.

• fallback (numeric) – default speed value (km per hour) to assign to edges whose
highway type did not appear in hwy_speeds and had no preexisting speed values on any
edge

• precision (int) – decimal precision to round speed_kph

Returns G – graph with speed_kph attributes on all edges

Return type networkx.MultiDiGraph

osmnx.speed.add_edge_travel_times(G, precision=1)
Add edge travel time (seconds) to graph as new travel_time edge attributes.

Calculates free-flow travel time along each edge, based on length and speed_kph attributes. Note: run
add_edge_speeds first to generate the speed_kph attribute. All edges must have length and speed_kph attributes
and all their values must be non-null.

Parameters

• G (networkx.MultiDiGraph) – input graph

• precision (int) – decimal precision to round travel_time

Returns G – graph with travel_time attributes on all edges

Return type networkx.MultiDiGraph

3.2.16 osmnx.stats module

Calculate geometric and topological network measures.

This module defines streets as the edges in an undirected representation of the graph. Using undirected graph edges
prevents double-counting bidirectional edges of a two-way street, but may double-count a divided road’s separate
centerlines with different end point nodes. If clean_periphery=True when the graph was created (which is the default
parameterization), then you will get accurate node degrees (and in turn streets-per-node counts) even at the periphery
of the graph.

You can use NetworkX directly for additional topological network measures.

osmnx.stats.basic_stats(G, area=None, clean_int_tol=None, clean_intersects=None, toler-
ance=None, circuity_dist=None)

Calculate basic descriptive geometric and topological measures of a graph.

Density measures are only calculated if area is provided and clean intersection measures are only calculated if
clean_int_tol is provided.

Parameters

• G (networkx.MultiDiGraph) – input graph

• area (float) – if not None, calculate density measures and use this area value (in square
meters) as the denominator

• clean_int_tol (float) – if not None, calculate consolidated intersections count (and
density, if area is also provided) and use this tolerance value; refer to the simplifica-
tion.consolidate_intersections function documentation for details

• clean_intersects (bool) – deprecated, do not use

3.2. Internals reference 89

OSMnx Documentation, Release 1.1.1

• tolerance (float) – deprecated, do not use

• circuity_dist (string) – deprecated, do not use

Returns

stats –

dictionary containing the following attributes

• circuity_avg - see circuity_avg function documentation

• clean_intersection_count - see clean_intersection_count function documentation

• clean_intersection_density_km - clean_intersection_count per sq km

• edge_density_km - edge_length_total per sq km

• edge_length_avg - edge_length_total / m

• edge_length_total - see edge_length_total function documentation

• intersection_count - see intersection_count function documentation

• intersection_density_km - intersection_count per sq km

• k_avg - graph’s average node degree (in-degree and out-degree)

• m - count of edges in graph

• n - count of nodes in graph

• node_density_km - n per sq km

• self_loop_proportion - see self_loop_proportion function documentation

• street_density_km - street_length_total per sq km

• street_length_avg - street_length_total / street_segment_count

• street_length_total - see street_length_total function documentation

• street_segment_count - see street_segment_count function documentation

• streets_per_node_avg - see streets_per_node_avg function documentation

• streets_per_node_counts - see streets_per_node_counts function documentation

• streets_per_node_proportions - see streets_per_node_proportions function documenta-
tion

Return type dict

osmnx.stats.circuity_avg(Gu)
Calculate average street circuity using edges of undirected graph.

Circuity is the sum of edge lengths divided by the sum of straight-line distances between edge endpoints. Cal-
culates straight-line distance as euclidean distance if projected or great-circle distance if unprojected.

Parameters Gu (networkx.MultiGraph) – undirected input graph

Returns circuity_avg – the graph’s average undirected edge circuity

Return type float

osmnx.stats.edge_length_total(G)
Calculate graph’s total edge length.

Parameters G (networkx.MultiDiGraph) – input graph

90 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

Returns length – total length (meters) of edges in graph

Return type float

osmnx.stats.extended_stats(G, connectivity=False, anc=False, ecc=False, bc=False, cc=False)
Do not use: deprecated and will be removed in a future release.

Parameters

• G (networkx.MultiDiGraph) – deprecated

• connectivity (bool) – deprecated

• anc (bool) – deprecated

• ecc (bool) – deprecated

• bc (bool) – deprecated

• cc (bool) – deprecated

Returns

Return type dict

osmnx.stats.intersection_count(G=None, min_streets=2)
Count the intersections in a graph.

Intersections are defined as nodes with at least min_streets number of streets incident on them.

Parameters

• G (networkx.MultiDiGraph) – input graph

• min_streets (int) – a node must have at least min_streets incident on them to count as
an intersection

Returns count – count of intersections in graph

Return type int

osmnx.stats.self_loop_proportion(Gu)
Calculate percent of edges that are self-loops in a graph.

A self-loop is defined as an edge from node u to node v where u==v.

Parameters Gu (networkx.MultiGraph) – undirected input graph

Returns proportion – proportion of graph edges that are self-loops

Return type float

osmnx.stats.street_length_total(Gu)
Calculate graph’s total street segment length.

Parameters Gu (networkx.MultiGraph) – undirected input graph

Returns length – total length (meters) of streets in graph

Return type float

osmnx.stats.street_segment_count(Gu)
Count the street segments in a graph.

Parameters Gu (networkx.MultiGraph) – undirected input graph

Returns count – count of street segments in graph

Return type int

3.2. Internals reference 91

OSMnx Documentation, Release 1.1.1

osmnx.stats.streets_per_node(G)
Count streets (undirected edges) incident on each node.

Parameters G (networkx.MultiDiGraph) – input graph

Returns spn – dictionary with node ID keys and street count values

Return type dict

osmnx.stats.streets_per_node_avg(G)
Calculate graph’s average count of streets per node.

Parameters G (networkx.MultiDiGraph) – input graph

Returns spna – average count of streets per node

Return type float

osmnx.stats.streets_per_node_counts(G)
Calculate streets-per-node counts.

Parameters G (networkx.MultiDiGraph) – input graph

Returns spnc – dictionary keyed by count of streets incident on each node, and with values of how
many nodes in the graph have this count

Return type dict

osmnx.stats.streets_per_node_proportions(G)
Calculate streets-per-node proportions.

Parameters G (networkx.MultiDiGraph) – input graph

Returns spnp – dictionary keyed by count of streets incident on each node, and with values of what
proportion of nodes in the graph have this count

Return type dict

3.2.17 osmnx.truncate module

Truncate graph by distance, bounding box, or polygon.

osmnx.truncate.truncate_graph_bbox(G, north, south, east, west, truncate_by_edge=False, re-
tain_all=False, quadrat_width=0.05, min_num=3)

Remove every node in graph that falls outside a bounding box.

Parameters

• G (networkx.MultiDiGraph) – input graph

• north (float) – northern latitude of bounding box

• south (float) – southern latitude of bounding box

• east (float) – eastern longitude of bounding box

• west (float) – western longitude of bounding box

• truncate_by_edge (bool) – if True, retain nodes outside bounding box if at least one
of node’s neighbors is within the bounding box

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

92 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

• quadrat_width (numeric) – passed on to intersect_index_quadrats: the linear length
(in degrees) of the quadrats with which to cut up the geometry (default = 0.05, approx 4km
at NYC’s latitude)

• min_num (int) – passed on to intersect_index_quadrats: the minimum number of linear
quadrat lines (e.g., min_num=3 would produce a quadrat grid of 4 squares)

Returns G – the truncated graph

Return type networkx.MultiDiGraph

osmnx.truncate.truncate_graph_dist(G, source_node, max_dist=1000, weight='length', re-
tain_all=False)

Remove every node farther than some network distance from source_node.

This function can be slow for large graphs, as it must calculate shortest path distances between source_node and
every other graph node.

Parameters

• G (networkx.MultiDiGraph) – input graph

• source_node (int) – the node in the graph from which to measure network distances to
other nodes

• max_dist (int) – remove every node in the graph greater than this distance from the
source_node (along the network)

• weight (string) – how to weight the graph when measuring distance (default ‘length’
is how many meters long the edge is)

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

Returns G – the truncated graph

Return type networkx.MultiDiGraph

osmnx.truncate.truncate_graph_polygon(G, polygon, retain_all=False, trun-
cate_by_edge=False, quadrat_width=0.05,
min_num=3)

Remove every node in graph that falls outside a (Multi)Polygon.

Parameters

• G (networkx.MultiDiGraph) – input graph

• polygon (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon) – only retain nodes in graph that lie within this geometry

• retain_all (bool) – if True, return the entire graph even if it is not connected. other-
wise, retain only the largest weakly connected component.

• truncate_by_edge (bool) – if True, retain nodes outside boundary polygon if at least
one of node’s neighbors is within the polygon

• quadrat_width (numeric) – passed on to intersect_index_quadrats: the linear length
(in degrees) of the quadrats with which to cut up the geometry (default = 0.05, approx 4km
at NYC’s latitude)

• min_num (int) – passed on to intersect_index_quadrats: the minimum number of linear
quadrat lines (e.g., min_num=3 would produce a quadrat grid of 4 squares)

Returns G – the truncated graph

Return type networkx.MultiDiGraph

3.2. Internals reference 93

OSMnx Documentation, Release 1.1.1

3.2.18 osmnx.utils module

General utility functions.

osmnx.utils._get_logger(level, name, filename)
Create a logger or return the current one if already instantiated.

Parameters

• level (int) – one of Python’s logger.level constants

• name (string) – name of the logger

• filename (string) – name of the log file, without file extension

Returns logger

Return type logging.logger

osmnx.utils.citation()
Print the OSMnx package’s citation information.

Boeing, G. 2017. OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Com-
plex Street Networks. Computers, Environment and Urban Systems, 65, 126-139. https://doi.org/10.1016/j.
compenvurbsys.2017.05.004

Returns

Return type None

osmnx.utils.config(all_oneway=False, bidirectional_network_types=['walk'], cache_folder='./cache',
cache_only_mode=False, data_folder='./data', default_accept_language='en',
default_access='["access"!~"private"]', default_crs='epsg:4326', de-
fault_referer='OSMnx Python package (https://github.com/gboeing/osmnx)',
default_user_agent='OSMnx Python package (https://github.com/gboeing/osmnx)',
elevation_provider='google', imgs_folder='./images', log_console=False,
log_file=False, log_filename='osmnx', log_level=20, log_name='OSMnx',
logs_folder='./logs', max_query_area_size=2500000000, memory=None,
nominatim_endpoint='https://nominatim.openstreetmap.org/', nomina-
tim_key=None, osm_xml_node_attrs=['id', 'timestamp', 'uid', 'user',
'version', 'changeset', 'lat', 'lon'], osm_xml_node_tags=['highway'],
osm_xml_way_attrs=['id', 'timestamp', 'uid', 'user', 'version', 'changeset'],
osm_xml_way_tags=['highway', 'lanes', 'maxspeed', 'name', 'oneway'],
overpass_endpoint='https://overpass-api.de/api', overpass_rate_limit=True,
overpass_settings='[out:json][timeout:{timeout}]{maxsize}', timeout=180,
use_cache=True, useful_tags_node=['ref', 'highway'], useful_tags_way=['bridge',
'tunnel', 'oneway', 'lanes', 'ref', 'name', 'highway', 'maxspeed', 'service', 'access',
'area', 'landuse', 'width', 'est_width', 'junction'])

Configure OSMnx by setting the default global settings’ values.

Any parameters not passed by the caller are (re-)set to their original default values.

Parameters

• all_oneway (bool) – Only use if specifically saving to .osm XML file with
save_graph_xml function. if True, forces all ways to be loaded as oneway ways, preserving
the original order of nodes stored in the OSM way XML. This also retains original OSM
string values for oneway attribute values, rather than converting them to a True/False bool.

• bidirectional_network_types (list) – network types for which a fully bidirec-
tional graph will be created

94 Chapter 3. User reference

https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1016/j.compenvurbsys.2017.05.004

OSMnx Documentation, Release 1.1.1

• cache_folder (string or pathlib.Path) – path to folder in which to save/load
HTTP response cache

• data_folder (string or pathlib.Path) – path to folder in which to save/load
graph files by default

• cache_only_mode (bool) – If True, download network data from Overpass then raise a
CacheOnlyModeInterrupt error for user to catch. This prevents graph building from taking
place and instead just saves OSM response data to cache. Useful for sequentially caching
lots of raw data (as you can only query Overpass one request at a time) then using the cache
to quickly build many graphs simultaneously with multiprocessing.

• default_accept_language (string) – HTTP header accept-language

• default_access (string) – default filter for OSM “access” key

• default_crs (string) – default coordinate reference system to set when creating
graphs

• default_referer (string) – HTTP header referer

• default_user_agent (string) – HTTP header user-agent

• elevation_provider (string {"google", "airmap"}) – the API provider to
use for adding node elevations

• imgs_folder (string or pathlib.Path) – path to folder in which to save plot
images by default

• log_file (bool) – if True, save log output to a file in logs_folder

• log_filename (string) – name of the log file, without file extension

• log_console (bool) – if True, print log output to the console (terminal window)

• log_level (int) – one of Python’s logger.level constants

• log_name (string) – name of the logger

• logs_folder (string or pathlib.Path) – path to folder in which to save log
files

• max_query_area_size (int) – maximum area for any part of the geometry in meters:
any polygon bigger than this will get divided up for multiple queries to API (default 50km
x 50km)

• memory (int) – Overpass server memory allocation size for the query, in bytes. If None,
server will use its default allocation size. Use with caution.

• nominatim_endpoint (string) – base API endpoint to use for nominatim queries

• nominatim_key (string) – your API key, if you are using an endpoint that requires
one

• osm_xml_node_attrs (list) – node attributes for saving .osm XML files with
save_graph_xml function

• osm_xml_node_tags (list) – node tags for saving .osm XML files with
save_graph_xml function

• osm_xml_way_attrs (list) – edge attributes for saving .osm XML files with
save_graph_xml function

• osm_xml_way_tags (list) – edge tags for for saving .osm XML files with
save_graph_xml function

3.2. Internals reference 95

OSMnx Documentation, Release 1.1.1

• overpass_endpoint (string) – base API endpoint to use for overpass queries

• overpass_rate_limit (bool) – if True, check the overpass server status endpoint for
how long to pause before making request. Necessary if server uses slot management, but
can be set to False if you are running your own overpass instance.

• overpass_settings (string) – Settings string for overpass queries.
For example, to query historical OSM data as of a certain date:
'[out:json][timeout:90][date:"2019-10-28T19:20:00Z"]'. Use
with caution.

• timeout (int) – the timeout interval for the HTTP request and for API to use while
running the query

• use_cache (bool) – if True, cache HTTP responses locally instead of calling API re-
peatedly for the same request

• useful_tags_node (list) – OSM “node” tags to add as graph node attributes, when
present

• useful_tags_way (list) – OSM “way” tags to add as graph edge attributes, when
present

Returns

Return type None

osmnx.utils.log(message, level=None, name=None, filename=None)
Write a message to the logger.

This logs to file and/or prints to the console (terminal), depending on the current configuration of settings.log_file
and settings.log_console.

Parameters

• message (string) – the message to log

• level (int) – one of Python’s logger.level constants

• name (string) – name of the logger

• filename (string) – name of the log file, without file extension

Returns

Return type None

osmnx.utils.ts(style='datetime', template=None)
Get current timestamp as string.

Parameters

• style (string {"datetime", "date", "time"}) – format the timestamp with
this built-in template

• template (string) – if not None, format the timestamp with this template instead of
one of the built-in styles

Returns ts – the string timestamp

Return type string

96 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

3.2.19 osmnx.utils_geo module

Geospatial utility functions.

osmnx.utils_geo._consolidate_subdivide_geometry(geometry,
max_query_area_size=None)

Consolidate and subdivide some geometry.

Consolidate a geometry into a convex hull, then subdivide it into smaller sub-polygons if its area exceeds max
size (in geometry’s units). Configure the max size via max_query_area_size in the settings module.

Parameters

• geometry (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon) – the geometry to consolidate and subdivide

• max_query_area_size (int) – maximum area for any part of the geometry in meters:
any polygon bigger than this will get divided up for multiple queries to API (default 50km
x 50km). if None, use settings.max_query_area_size

Returns geometry

Return type shapely.geometry.MultiPolygon

osmnx.utils_geo._get_polygons_coordinates(geometry)
Extract exterior coordinates from polygon(s) to pass to OSM.

Ignore the interior (“holes”) coordinates.

Parameters geometry (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon) – the geometry to extract exterior coordinates from

Returns polygon_coord_strs

Return type list

osmnx.utils_geo._intersect_index_quadrats(geometries, polygon, quadrat_width=0.05,
min_num=3)

Identify geometries that intersect a (multi)polygon.

Uses an r-tree spatial index and cuts polygon up into smaller sub-polygons for r-tree acceleration. Ensure that
geometries and polygon are in the same coordinate reference system.

Parameters

• geometries (geopandas.GeoSeries) – the geometries to intersect with the polygon

• polygon (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon) – the polygon to intersect with the geometries

• quadrat_width (numeric) – linear length (in polygon’s units) of quadrat lines with
which to cut up the polygon (default = 0.05 degrees, approx 4km at NYC’s latitude)

• min_num (int) – the minimum number of linear quadrat lines (e.g., min_num=3 would
produce a quadrat grid of 4 squares)

Returns geoms_in_poly – index labels of geometries that intersected polygon

Return type set

osmnx.utils_geo._quadrat_cut_geometry(geometry, quadrat_width, min_num=3)
Split a Polygon or MultiPolygon up into sub-polygons of a specified size.

Parameters

3.2. Internals reference 97

OSMnx Documentation, Release 1.1.1

• geometry (shapely.geometry.Polygon or shapely.geometry.
MultiPolygon) – the geometry to split up into smaller sub-polygons

• quadrat_width (numeric) – the linear width of the quadrats with which to cut up the
geometry (in the units the geometry is in)

• min_num (int) – the minimum number of linear quadrat lines (e.g., min_num=3 would
produce a quadrat grid of 4 squares)

Returns geometry

Return type shapely.geometry.MultiPolygon

osmnx.utils_geo._round_linestring_coords(ls, precision)
Round the coordinates of a shapely LineString to some decimal precision.

Parameters

• ls (shapely.geometry.LineString) – the LineString to round the coordinates of

• precision (int) – decimal precision to round coordinates to

Returns

Return type shapely.geometry.LineString

osmnx.utils_geo._round_multilinestring_coords(mls, precision)
Round the coordinates of a shapely MultiLineString to some decimal precision.

Parameters

• mls (shapely.geometry.MultiLineString) – the MultiLineString to round the
coordinates of

• precision (int) – decimal precision to round coordinates to

Returns

Return type shapely.geometry.MultiLineString

osmnx.utils_geo._round_multipoint_coords(mpt, precision)
Round the coordinates of a shapely MultiPoint to some decimal precision.

Parameters

• mpt (shapely.geometry.MultiPoint) – the MultiPoint to round the coordinates of

• precision (int) – decimal precision to round coordinates to

Returns

Return type shapely.geometry.MultiPoint

osmnx.utils_geo._round_multipolygon_coords(mp, precision)
Round the coordinates of a shapely MultiPolygon to some decimal precision.

Parameters

• mp (shapely.geometry.MultiPolygon) – the MultiPolygon to round the coordi-
nates of

• precision (int) – decimal precision to round coordinates to

Returns

Return type shapely.geometry.MultiPolygon

98 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

osmnx.utils_geo._round_point_coords(pt, precision)
Round the coordinates of a shapely Point to some decimal precision.

Parameters

• pt (shapely.geometry.Point) – the Point to round the coordinates of

• precision (int) – decimal precision to round coordinates to

Returns

Return type shapely.geometry.Point

osmnx.utils_geo._round_polygon_coords(p, precision)
Round the coordinates of a shapely Polygon to some decimal precision.

Parameters

• p (shapely.geometry.Polygon) – the polygon to round the coordinates of

• precision (int) – decimal precision to round coordinates to

Returns

Return type shapely.geometry.Polygon

osmnx.utils_geo.bbox_from_point(point, dist=1000, project_utm=False, return_crs=False)
Create a bounding box from a (lat, lng) center point.

Create a bounding box some distance in each direction (north, south, east, and west) from the center point and
optionally project it.

Parameters

• point (tuple) – the (lat, lng) center point to create the bounding box around

• dist (int) – bounding box distance in meters from the center point

• project_utm (bool) – if True, return bounding box as UTM-projected coordinates

• return_crs (bool) – if True, and project_utm=True, return the projected CRS too

Returns (north, south, east, west) or (north, south, east, west, crs_proj)

Return type tuple

osmnx.utils_geo.bbox_to_poly(north, south, east, west)
Convert bounding box coordinates to shapely Polygon.

Parameters

• north (float) – northern coordinate

• south (float) – southern coordinate

• east (float) – eastern coordinate

• west (float) – western coordinate

Returns

Return type shapely.geometry.Polygon

osmnx.utils_geo.interpolate_points(geom, dist)
Interpolate evenly spaced points along a LineString.

The spacing is approximate because the LineString’s length may not be evenly divisible by it.

Parameters

3.2. Internals reference 99

OSMnx Documentation, Release 1.1.1

• geom (shapely.geometry.LineString) – a LineString geometry

• dist (float) – spacing distance between interpolated points, in same units as geom.
smaller values generate more points.

Yields points (generator) – a generator of (x, y) tuples of the interpolated points’ coordinates

osmnx.utils_geo.redistribute_vertices(geom, dist)
Do not use, deprecated.

Parameters

• geom (shapely.geometry.LineString or shapely.geometry.
MultiLineString) – deprecated, do not use

• dist (float) – deprecated, do not use

Returns

Return type list or shapely.geometry.MultiLineString

osmnx.utils_geo.round_geometry_coords(geom, precision)
Round the coordinates of a shapely geometry to some decimal precision.

Parameters

• geom (shapely.geometry.geometry {Point, MultiPoint,
LineString, MultiLineString, Polygon, MultiPolygon}) – the
geometry to round the coordinates of

• precision (int) – decimal precision to round coordinates to

Returns

Return type shapely.geometry.geometry

osmnx.utils_geo.sample_points(G, n)
Randomly sample points constrained to a spatial graph.

This generates a graph-constrained uniform random sample of points. Unlike typical spatially uniform random
sampling, this method accounts for the graph’s geometry. And unlike equal-length edge segmenting, this method
guarantees uniform randomness.

Parameters

• G (networkx.MultiGraph) – graph to sample points from; should be undirected (to not
oversample bidirectional edges) and projected (for accurate point interpolation)

• n (int) – how many points to sample

Returns points – the sampled points, multi-indexed by (u, v, key) of the edge from which each point
was drawn

Return type geopandas.GeoSeries

100 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

3.2.20 osmnx.utils_graph module

Graph utility functions.

osmnx.utils_graph._is_duplicate_edge(data1, data2)
Check if two graph edge data dicts have the same osmid and geometry.

Parameters

• data1 (dict) – the first edge’s data

• data2 (dict) – the second edge’s data

Returns is_dupe

Return type bool

osmnx.utils_graph._is_same_geometry(ls1, ls2)
Determine if two LineString geometries are the same (in either direction).

Check both the normal and reversed orders of their constituent points.

Parameters

• ls1 (shapely.geometry.LineString) – the first LineString geometry

• ls2 (shapely.geometry.LineString) – the second LineString geometry

Returns

Return type bool

osmnx.utils_graph._update_edge_keys(G)
Increment key of one edge of parallel edges that differ in geometry.

For example, two streets from u to v that bow away from each other as separate streets, rather than opposite
direction edges of a single street. Increment one of these edge’s keys so that they do not match across u, v, k or
v, u, k so we can add both to an undirected MultiGraph.

Parameters G (networkx.MultiDiGraph) – input graph

Returns G

Return type networkx.MultiDiGraph

osmnx.utils_graph.count_streets_per_node(G, nodes=None)
Count how many physical street segments connect to each node in a graph.

This function uses an undirected representation of the graph and special handling of self-loops to accu-
rately count physical streets rather than directed edges. Note: this function is automatically run by all
the graph.graph_from_x functions prior to truncating the graph to the requested boundaries, to add accurate
street_count attributes to each node even if some of its neighbors are outside the requested graph boundaries.

Parameters

• G (networkx.MultiDiGraph) – input graph

• nodes (list) – which node IDs to get counts for. if None, use all graph nodes, otherwise
calculate counts only for these node IDs

Returns streets_per_node – counts of how many physical streets connect to each node, with keys
= node ids and values = counts

Return type dict

3.2. Internals reference 101

OSMnx Documentation, Release 1.1.1

osmnx.utils_graph.get_digraph(G, weight='length')
Convert MultiDiGraph to DiGraph.

Chooses between parallel edges by minimizing weight attribute value. Note: see also get_undirected to convert
MultiDiGraph to MultiGraph.

Parameters

• G (networkx.MultiDiGraph) – input graph

• weight (string) – attribute value to minimize when choosing between parallel edges

Returns

Return type networkx.DiGraph

osmnx.utils_graph.get_largest_component(G, strongly=False)
Get subgraph of G’s largest weakly/strongly connected component.

Parameters

• G (networkx.MultiDiGraph) – input graph

• strongly (bool) – if True, return the largest strongly instead of weakly connected com-
ponent

Returns G – the largest connected component subgraph of the original graph

Return type networkx.MultiDiGraph

osmnx.utils_graph.get_route_edge_attributes(G, route, attribute=None, mini-
mize_key='length', retrieve_default=None)

Get a list of attribute values for each edge in a path.

Parameters

• G (networkx.MultiDiGraph) – input graph

• route (list) – list of nodes IDs constituting the path

• attribute (string) – the name of the attribute to get the value of for each edge. If
None, the complete data dict is returned for each edge.

• minimize_key (string) – if there are parallel edges between two nodes, select the one
with the lowest value of minimize_key

• retrieve_default (Callable[Tuple[Any, Any], Any]) – function called
with the edge nodes as parameters to retrieve a default value, if the edge does not contain
the given attribute (otherwise a KeyError is raised)

Returns attribute_values – list of edge attribute values

Return type list

osmnx.utils_graph.get_undirected(G)
Convert MultiDiGraph to undirected MultiGraph.

Maintains parallel edges only if their geometries differ. Note: see also get_digraph to convert MultiDiGraph to
DiGraph.

Parameters G (networkx.MultiDiGraph) – input graph

Returns

Return type networkx.MultiGraph

102 Chapter 3. User reference

OSMnx Documentation, Release 1.1.1

osmnx.utils_graph.graph_from_gdfs(gdf_nodes, gdf_edges, graph_attrs=None)
Convert node and edge GeoDataFrames to a MultiDiGraph.

This function is the inverse of graph_to_gdfs and is designed to work in conjunction with it.

However, you can convert arbitrary node and edge GeoDataFrames as long as 1) gdf_nodes is uniquely indexed
by osmid, 2) gdf_nodes contains x and y coordinate columns representing node geometries, 3) gdf_edges is
uniquely multi-indexed by u, v, key (following normal MultiDiGraph structure). This allows you to load any
node/edge shapefiles or GeoPackage layers as GeoDataFrames then convert them to a MultiDiGraph for graph
analysis. Note that any geometry attribute on gdf_nodes is discarded since x and y provide the necessary node
geometry information instead.

Parameters

• gdf_nodes (geopandas.GeoDataFrame) – GeoDataFrame of graph nodes uniquely
indexed by osmid

• gdf_edges (geopandas.GeoDataFrame) – GeoDataFrame of graph edges uniquely
multi-indexed by u, v, key

• graph_attrs (dict) – the new G.graph attribute dict. if None, use crs from gdf_edges
as the only graph-level attribute (gdf_edges must have crs attribute set)

Returns G

Return type networkx.MultiDiGraph

osmnx.utils_graph.graph_to_gdfs(G, nodes=True, edges=True, node_geometry=True,
fill_edge_geometry=True)

Convert a MultiDiGraph to node and/or edge GeoDataFrames.

This function is the inverse of graph_from_gdfs.

Parameters

• G (networkx.MultiDiGraph) – input graph

• nodes (bool) – if True, convert graph nodes to a GeoDataFrame and return it

• edges (bool) – if True, convert graph edges to a GeoDataFrame and return it

• node_geometry (bool) – if True, create a geometry column from node x and y attributes

• fill_edge_geometry (bool) – if True, fill in missing edge geometry fields using
nodes u and v

Returns gdf_nodes or gdf_edges or tuple of (gdf_nodes, gdf_edges). gdf_nodes is indexed by osmid
and gdf_edges is multi-indexed by u, v, key following normal MultiDiGraph structure.

Return type geopandas.GeoDataFrame or tuple

osmnx.utils_graph.remove_isolated_nodes(G)
Remove from a graph all nodes that have no incident edges.

Parameters G (networkx.MultiDiGraph) – graph from which to remove isolated nodes

Returns G – graph with all isolated nodes removed

Return type networkx.MultiDiGraph

3.2. Internals reference 103

OSMnx Documentation, Release 1.1.1

104 Chapter 3. User reference

CHAPTER

FOUR

SUPPORT

If you have a usage question, please ask it on StackOverflow. If you’ve discovered a bug in OSMnx, please open an
issue at the OSMnx GitHub repo.

105

https://stackoverflow.com/search?q=osmnx
https://github.com/gboeing/osmnx

OSMnx Documentation, Release 1.1.1

106 Chapter 4. Support

CHAPTER

FIVE

LICENSE

The project is licensed under the MIT license.

107

OSMnx Documentation, Release 1.1.1

108 Chapter 5. License

CHAPTER

SIX

INDICES

• genindex

• modindex

• search

109

OSMnx Documentation, Release 1.1.1

110 Chapter 6. Indices

PYTHON MODULE INDEX

o
osmnx.bearing, 7
osmnx.distance, 9
osmnx.downloader, 13
osmnx.elevation, 13
osmnx.folium, 15
osmnx.geocoder, 16
osmnx.geometries, 17
osmnx.graph, 20
osmnx.io, 24
osmnx.osm_xml, 26
osmnx.plot, 27
osmnx.projection, 31
osmnx.settings, 32
osmnx.simplification, 32
osmnx.speed, 33
osmnx.stats, 34
osmnx.truncate, 37
osmnx.utils, 39
osmnx.utils_geo, 41
osmnx.utils_graph, 43

111

OSMnx Documentation, Release 1.1.1

112 Python Module Index

INDEX

A
add_edge_bearings() (in module osmnx.bearing),

7
add_edge_grades() (in module osmnx.elevation),

13
add_edge_lengths() (in module osmnx.distance), 9
add_edge_speeds() (in module osmnx.speed), 33
add_edge_travel_times() (in module

osmnx.speed), 34
add_node_elevations() (in module

osmnx.elevation), 14
add_node_elevations_google() (in module

osmnx.elevation), 14
add_node_elevations_raster() (in module

osmnx.elevation), 14

B
basic_stats() (in module osmnx.stats), 34
bbox_from_point() (in module osmnx.utils_geo),

41
bbox_to_poly() (in module osmnx.utils_geo), 42

C
calculate_bearing() (in module osmnx.bearing),

7
circuity_avg() (in module osmnx.stats), 35
citation() (in module osmnx.utils), 39
config() (in module osmnx.utils), 39
consolidate_intersections() (in module

osmnx.simplification), 32
count_streets_per_node() (in module

osmnx.utils_graph), 43

E
edge_length_total() (in module osmnx.stats), 35
euclidean_dist_vec() (in module

osmnx.distance), 9
extended_stats() (in module osmnx.stats), 35

G
geocode() (in module osmnx.geocoder), 16
geocode_to_gdf() (in module osmnx.geocoder), 16

geometries_from_address() (in module
osmnx.geometries), 17

geometries_from_bbox() (in module
osmnx.geometries), 17

geometries_from_place() (in module
osmnx.geometries), 18

geometries_from_point() (in module
osmnx.geometries), 18

geometries_from_polygon() (in module
osmnx.geometries), 19

geometries_from_xml() (in module
osmnx.geometries), 19

get_bearing() (in module osmnx.bearing), 8
get_colors() (in module osmnx.plot), 27
get_digraph() (in module osmnx.utils_graph), 43
get_edge_colors_by_attr() (in module

osmnx.plot), 27
get_largest_component() (in module

osmnx.utils_graph), 43
get_nearest_edge() (in module osmnx.distance), 9
get_nearest_edges() (in module osmnx.distance),

10
get_nearest_node() (in module osmnx.distance),

10
get_nearest_nodes() (in module osmnx.distance),

10
get_node_colors_by_attr() (in module

osmnx.plot), 27
get_route_edge_attributes() (in module

osmnx.utils_graph), 44
get_undirected() (in module osmnx.utils_graph),

44
graph_from_address() (in module osmnx.graph),

20
graph_from_bbox() (in module osmnx.graph), 20
graph_from_gdfs() (in module osmnx.utils_graph),

44
graph_from_place() (in module osmnx.graph), 21
graph_from_point() (in module osmnx.graph), 22
graph_from_polygon() (in module osmnx.graph),

23
graph_from_xml() (in module osmnx.graph), 23

113

OSMnx Documentation, Release 1.1.1

graph_to_gdfs() (in module osmnx.utils_graph), 45
great_circle_vec() (in module osmnx.distance),

11

I
interpolate_points() (in module

osmnx.utils_geo), 42
intersection_count() (in module osmnx.stats),

36
is_projected() (in module osmnx.projection), 31

K
k_shortest_paths() (in module osmnx.distance),

11

L
load_graphml() (in module osmnx.io), 24
log() (in module osmnx.utils), 41

M
module

osmnx.bearing, 7
osmnx.distance, 9
osmnx.downloader, 13
osmnx.elevation, 13
osmnx.folium, 15
osmnx.geocoder, 16
osmnx.geometries, 17
osmnx.graph, 20
osmnx.io, 24
osmnx.osm_xml, 26
osmnx.plot, 27
osmnx.projection, 31
osmnx.settings, 32
osmnx.simplification, 32
osmnx.speed, 33
osmnx.stats, 34
osmnx.truncate, 37
osmnx.utils, 39
osmnx.utils_geo, 41
osmnx.utils_graph, 43

N
nearest_edges() (in module osmnx.distance), 11
nearest_nodes() (in module osmnx.distance), 12
nominatim_request() (in module

osmnx.downloader), 13

O
orientation_entropy() (in module

osmnx.bearing), 8
osmnx.bearing

module, 7
osmnx.distance

module, 9
osmnx.downloader

module, 13
osmnx.elevation

module, 13
osmnx.folium

module, 15
osmnx.geocoder

module, 16
osmnx.geometries

module, 17
osmnx.graph

module, 20
osmnx.io

module, 24
osmnx.osm_xml

module, 26
osmnx.plot

module, 27
osmnx.projection

module, 31
osmnx.settings

module, 32
osmnx.simplification

module, 32
osmnx.speed

module, 33
osmnx.stats

module, 34
osmnx.truncate

module, 37
osmnx.utils

module, 39
osmnx.utils_geo

module, 41
osmnx.utils_graph

module, 43
overpass_request() (in module

osmnx.downloader), 13

P
plot_figure_ground() (in module osmnx.plot), 28
plot_footprints() (in module osmnx.plot), 28
plot_graph() (in module osmnx.plot), 29
plot_graph_folium() (in module osmnx.folium),

15
plot_graph_route() (in module osmnx.plot), 30
plot_graph_routes() (in module osmnx.plot), 30
plot_orientation() (in module osmnx.bearing), 8
plot_route_folium() (in module osmnx.folium),

15
project_gdf() (in module osmnx.projection), 31
project_geometry() (in module osmnx.projection),

31

114 Index

OSMnx Documentation, Release 1.1.1

project_graph() (in module osmnx.projection), 31

R
redistribute_vertices() (in module

osmnx.utils_geo), 42
remove_isolated_nodes() (in module

osmnx.utils_graph), 45
round_geometry_coords() (in module

osmnx.utils_geo), 42

S
sample_points() (in module osmnx.utils_geo), 42
save_graph_geopackage() (in module osmnx.io),

24
save_graph_shapefile() (in module osmnx.io),

24
save_graph_xml() (in module osmnx.io), 25
save_graph_xml() (in module osmnx.osm_xml), 26
save_graphml() (in module osmnx.io), 25
self_loop_proportion() (in module

osmnx.stats), 36
shortest_path() (in module osmnx.distance), 12
simplify_graph() (in module

osmnx.simplification), 33
street_length_total() (in module osmnx.stats),

36
street_segment_count() (in module

osmnx.stats), 36
streets_per_node() (in module osmnx.stats), 36
streets_per_node_avg() (in module

osmnx.stats), 36
streets_per_node_counts() (in module

osmnx.stats), 37
streets_per_node_proportions() (in module

osmnx.stats), 37

T
truncate_graph_bbox() (in module

osmnx.truncate), 37
truncate_graph_dist() (in module

osmnx.truncate), 37
truncate_graph_polygon() (in module

osmnx.truncate), 38
ts() (in module osmnx.utils), 41

Index 115

	Installation
	Usage
	User reference
	User reference
	Internals reference

	Support
	License
	Indices
	Python Module Index
	Index

